a) The internal energy U is related to the free energy F and expressed in terms of the state variables S and V as,
U(S, V) = F \Bigl(T(S,V),V\Bigr) + T (S, V) S .
Using the definition (4.26) and the chain rule, it can be recast as,
S (T, V, \left\{ N_A\right\} ) = − \frac{\partial F(T,V,\left\{ N_A\right\} )}{\partial T} . (4.26)
U(S, V) = F \Bigl(T(S,V),V\Bigr) – T (S, V) \frac{\partial F \Bigl(T(S,V),V\Bigr) }{\partial T } = -T (S,V)^2\frac{\partial }{\partial T} \Biggl(\frac{F \Bigl(T(S,V)V\Bigr) }{T} \Biggr) .
b) Likewise, the enthalpy H is related to the Gibbs free energy G and expressed in terms of the state variables S and p as,
H(S, p) = G \Bigl(T(S,p),p\Bigr) + T (S, p) S .
Using the definition (4.40) and the chain rule, it can be recast as,
S (T, p, \left\{ N_A\right\} ) = − \frac{\partial G(T,p,\left\{ N_A\right\} ) }{\partial T} . (4.40)
H(S, p) = G \Bigl(T(S,p),p\Bigr) – T (S, p) \frac{\partial G \Bigl(T(S,p),p\Bigr) }{\partial T } = -T (S,p)^2\frac{\partial }{\partial T} \Biggl(\frac{G \Bigl(T(S,p)p\Bigr) }{T} \Biggr) .