Question 11.16: A silicon BJT small signal amplifier shown in Fig. 11.28 has...

A silicon BJT small signal amplifier shown in Fig. 11.28 has the circuit parameters as follows:
V_{CC} = 10 V, R_{1} = 11.5 kΩ , R_{2} = 41.4 kΩ , R_{C} = 5 kΩ , R_{E} = 1 kΩ
R_{s} = 1 kΩ , C_{E} = 150 μF, C_{C1} =  C_{C2} = 20 μF and β= 50
C_{\pi} = 100 pF, C_{\mu} = 5 pF, C_{W} + C_{L} = 5 pF and R_{L} = 10 kΩ .
Determine (a) dc bias values (b) mid-frequency gain (c) low-frequency cut-off, and (d) high-frequency cut-off.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a) To determine dc bias values:

R_{B} = R_{1} || R_{2} = 11.5 × 10^{3} || 41.4 × 10^{3} = 9   k \Omega

 

V_{BB} =\frac{R_{1}}{R_{1}+R_{2}} V_{CC}= \frac{11.5\times 10^{3}}{(11.5+41.4)\times 10^{3}}\times 10= 2.174  V

 

I_{B}= \frac{V_{BB}-0.7}{R_{B}+R_{E}(1+\beta )}= \frac{2.174-0.7}{9\times 10^{3} +1\times 10^{3} \times 51}\approx 0.0246  mA

 

I_{C} =\beta I_{B} = 50 × 0.0246 × 10^{–3} = 1.23   mA

 

V_{CE} = V_{CC} – I_{C} R_{C} – (I_{C} + I_{B}) R_{E}

 

= 10 – 1.23 × 10^{–3} × 5 × 10^{3} – (1.23 + 0.0246) × 10^{–3} × 1 × 10^{3}

= +2.595 V

(b) To determine mid-frequency gain:

The mid-frequency circuit model is shown in Fig. 11.29.

Assume                                     V_{s} = 1 V

r_{\pi } = \frac{25\beta }{I_{C}(mA)} = \frac{25\times 50}{1.23}= 1  K \Omega

V_{be}= \frac{V_{s}\times (R_{B} \parallel r_{\pi })}{R_{s}+(R_{B} \parallel r_{\pi })}

R_{B} \parallel r_{\pi }= \frac{9\times 10^{3} \times 1\times 10^{3} }{9\times 10^{3} +1\times 10^{3} }= 0.9  K \Omega

Given                                          R_{s} = 1  k \Omega

Therefore                                   V_{be}= \frac{1\times 0.9\times 10^{3}}{(1+0.9)\times 10^{3}} = 0.474  V

I_{b}=\frac{V_{be}}{r_{\pi }}= \frac{0.474}{1\times 10^{3} }= 0.474  mA

\beta  I_{b} = 50 × 0.474 × 10^{–3} = 23.7  mA

R_{o} = R_{C} || R_{L} = 5 × 10^{3} || 10 × 10^{3} = \frac{10}{3}   K  \Omega

V_{o} = –\beta I_{b} R_{o} = – 23.7 × 10^{3} ×\frac{10}{3}× 10^{3} = –79  V

A_{Vo}= \frac{V_{o}}{V_{s}}= -79

(c) To determine low-frequency cut-off:

\omega _{11}= \frac{1}{C_{C1}\left[R_{s}+(r_{\pi }\parallel R_{B})\right] }= \frac{1}{20\times 10^{-6}(1+0.9)\times 10^{3} } = 26.3  rad/s

\omega _{12}= \frac{1}{C_{C2}(R_{C}+R_{L}) }= \frac{1}{20\times 10^{-6}(5+10) \times 10^{3} }= 3.3  rad/s

\omega _{1p}= \frac{1}{C_{E}\left[(R_{s}\parallel R_{B})+r_{\pi }\right] }= \frac{1}{(150/51)\times 10^{-6}\times (0.9+1)\times 10^{3} } = 179   rad/s

As  \omega _{1p} >  \omega _{11}  >  \omega _{12},                \omega _{L} = \omega _{1p} = 179   rad/s = 28.5   Hz

(d) To determine high-frequency cut-off:

\omega _{21}= \frac{1}{C_{eq} (R_{s}\parallel R_{B}\parallel r_{\pi })}

\omega _{22}= \frac{1}{C_{o} R_{o} }

where                                         C_{eq} = C_{\pi} + C_{\mu} (1 + g_{m} R_{o})

C_{o}= C^{′}_{o}+C_{\mu }(1+\frac{1}{g_{m} R_{o}} )

where                                          C^{′}_{o}= C_{W} + C_{L} = 5  pF

C_{\pi} = 100  pF

g_{m}= \frac{\beta }{r_{\pi }}= \frac{50}{1} = 50 mS

R_{o}= \frac{10}{3} K\Omega

g_{m}R_{o}= 50\times 10^{-3} \times \frac{10}{3}\times 10^{3}= \frac{500}{3}

Substituting the values,

C_{eq}= 100\times 10^{-12}+5\times 10^{-12}(1+\frac{500}{3} )\approx 938.3          pF

C_{o}= 5\times 10^{-12}+5\times 10^{-12} (1+\frac{3}{500} )\approx 10 pF

R^{′}_{s}= R_{B} || R_{s} = 9 × 10^{3} || 1 × 10^{3} = 0.9     k \Omega

R^{′}_{s}|| r_{\pi} = 0.9 × 10^{3} || 1 × 10^{3} = 0.474   k \Omega

Therefore,                                 \omega _{21}= \frac{1}{C_{eq}(R_{s}\parallel R_{B}\parallel r_{\pi }) }

= \frac{1}{938.3\times 10^{-12} \times 0.474\times 10^{3} } = 2.25\times 10^{6}   rad/s  or  4.77  MHz

 \omega _{22}= \frac{1}{C_{o}R_{o} }= \frac{1}{10\times 10^{-12}(\frac{10}{3} )\times 10^{3} }= 30\times 10^{6}  rad/s  or  4.77  MHz

Thus                                            \omega  H = 0.358  MHz,   since f_{21} < f_{22}.

11.29

Related Answered Questions