(a) To determine dc bias values:
R_{B} = R_{1} || R_{2} = 11.5 × 10^{3} || 41.4 × 10^{3} = 9 k \Omega
V_{BB} =\frac{R_{1}}{R_{1}+R_{2}} V_{CC}= \frac{11.5\times 10^{3}}{(11.5+41.4)\times 10^{3}}\times 10= 2.174 V
I_{B}= \frac{V_{BB}-0.7}{R_{B}+R_{E}(1+\beta )}= \frac{2.174-0.7}{9\times 10^{3} +1\times 10^{3} \times 51}\approx 0.0246 mA
I_{C} =\beta I_{B} = 50 × 0.0246 × 10^{–3} = 1.23 mA
V_{CE} = V_{CC} – I_{C} R_{C} – (I_{C} + I_{B}) R_{E}
= 10 – 1.23 × 10^{–3} × 5 × 10^{3} – (1.23 + 0.0246) × 10^{–3} × 1 × 10^{3}
= +2.595 V
(b) To determine mid-frequency gain:
The mid-frequency circuit model is shown in Fig. 11.29.
Assume V_{s} = 1 V
r_{\pi } = \frac{25\beta }{I_{C}(mA)} = \frac{25\times 50}{1.23}= 1 K \Omega
V_{be}= \frac{V_{s}\times (R_{B} \parallel r_{\pi })}{R_{s}+(R_{B} \parallel r_{\pi })}
R_{B} \parallel r_{\pi }= \frac{9\times 10^{3} \times 1\times 10^{3} }{9\times 10^{3} +1\times 10^{3} }= 0.9 K \Omega
Given R_{s} = 1 k \Omega
Therefore V_{be}= \frac{1\times 0.9\times 10^{3}}{(1+0.9)\times 10^{3}} = 0.474 V
I_{b}=\frac{V_{be}}{r_{\pi }}= \frac{0.474}{1\times 10^{3} }= 0.474 mA
\beta I_{b} = 50 × 0.474 × 10^{–3} = 23.7 mA
R_{o} = R_{C} || R_{L} = 5 × 10^{3} || 10 × 10^{3} = \frac{10}{3} K \Omega
V_{o} = –\beta I_{b} R_{o} = – 23.7 × 10^{3} ×\frac{10}{3}× 10^{3} = –79 V
A_{Vo}= \frac{V_{o}}{V_{s}}= -79
(c) To determine low-frequency cut-off:
\omega _{11}= \frac{1}{C_{C1}\left[R_{s}+(r_{\pi }\parallel R_{B})\right] }= \frac{1}{20\times 10^{-6}(1+0.9)\times 10^{3} } = 26.3 rad/s
\omega _{12}= \frac{1}{C_{C2}(R_{C}+R_{L}) }= \frac{1}{20\times 10^{-6}(5+10) \times 10^{3} }= 3.3 rad/s
\omega _{1p}= \frac{1}{C_{E}\left[(R_{s}\parallel R_{B})+r_{\pi }\right] }= \frac{1}{(150/51)\times 10^{-6}\times (0.9+1)\times 10^{3} } = 179 rad/s
As \omega _{1p} > \omega _{11} > \omega _{12}, \omega _{L} = \omega _{1p} = 179 rad/s = 28.5 Hz
(d) To determine high-frequency cut-off:
\omega _{21}= \frac{1}{C_{eq} (R_{s}\parallel R_{B}\parallel r_{\pi })}
\omega _{22}= \frac{1}{C_{o} R_{o} }
where C_{eq} = C_{\pi} + C_{\mu} (1 + g_{m} R_{o})
C_{o}= C^{′}_{o}+C_{\mu }(1+\frac{1}{g_{m} R_{o}} )
where C^{′}_{o}= C_{W} + C_{L} = 5 pF
C_{\pi} = 100 pF
g_{m}= \frac{\beta }{r_{\pi }}= \frac{50}{1} = 50 mS
R_{o}= \frac{10}{3} K\Omega
g_{m}R_{o}= 50\times 10^{-3} \times \frac{10}{3}\times 10^{3}= \frac{500}{3}
Substituting the values,
C_{eq}= 100\times 10^{-12}+5\times 10^{-12}(1+\frac{500}{3} )\approx 938.3 pF
C_{o}= 5\times 10^{-12}+5\times 10^{-12} (1+\frac{3}{500} )\approx 10 pF
R^{′}_{s}= R_{B} || R_{s} = 9 × 10^{3} || 1 × 10^{3} = 0.9 k \Omega
R^{′}_{s}|| r_{\pi} = 0.9 × 10^{3} || 1 × 10^{3} = 0.474 k \Omega
Therefore, \omega _{21}= \frac{1}{C_{eq}(R_{s}\parallel R_{B}\parallel r_{\pi }) }
= \frac{1}{938.3\times 10^{-12} \times 0.474\times 10^{3} } = 2.25\times 10^{6} rad/s or 4.77 MHz
\omega _{22}= \frac{1}{C_{o}R_{o} }= \frac{1}{10\times 10^{-12}(\frac{10}{3} )\times 10^{3} }= 30\times 10^{6} rad/s or 4.77 MHz
Thus \omega H = 0.358 MHz, since f_{21} < f_{22}.