Question 6.18: A single-phase, 500 V, 50 Hz alternator produces a short-cir...

A single-phase, 500 V, 50 Hz alternator produces a short-circuit current of 170 A and an open circuit emf of 425 V when a field current of 15A passes through its field winding. If its armature has an effective resistance of 0.2 ohm, determine its full-load regulation at unity pf and at 0.8 pf lagging.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Here, Rated  power = 50  kVA = 50 \times 10^{3}  VA

Terminal voltage, V = 500  V; Armature resistance, R = 0.2  ohm

Short circuit current, I_{sc} = 170  A; Open circuit emf, E = 425  V

Synchronous impedance, Z_{s} = \frac{E}{I_{SC}} = \frac{425}{170} = 2.5  ohm

Synchronous reactance, X_{s} = \sqrt{\left(Z_{s}\right)^{2} – \left(R\right)^{2} } = \sqrt{\left(2.5\right)^{2} – \left(0.2\right)^{2} } = 2.492  ohm

Full load current, I = \frac{50 \times 10^{3}}{500} = 100  A

When p.f.  \cos \phi = 1; \sin \phi = 0

E_{0} = \sqrt{\left(V \cos \phi + IR\right)^{2} + \left(IX_{S}\right)^{2} } \\[0.5cm] \quad \; = \sqrt{\left(500 \times 1 + 100 \times 0.2\right)^{2} + \left(100 \times 2.492\right)^{2}} \\[0.5cm] \quad \; = 576.63  V

 

\% Reg. = \frac{E_{0} – V}{V} \times 100 = \frac{576.63 – 500}{500} \times 100 \\[0.5cm] \quad \quad \quad = \mathbf{15.326 \%}

 

When p.f.  \cos \phi = 0.8  lagging; \sin \phi = \sin \cos^{–1} 0.8 = 0.6

E_{0} = \sqrt{\left(V \cos \phi + IR\right)^{2} + \left(V \sin \phi + IX_{S}\right)^{2} } \\[0.5cm] \quad \; = \sqrt{\left(500 \times 0.8 + 100 \times 0.2\right)^{2} + \left(500 \times 0.6 + 100 \times 2.492\right)^{2}} \\[0.5cm] \quad \; = \sqrt{\left(420\right)^{2} + \left(549.2\right)^{2}} = 671.62  V

 

\% Reg. = \frac{E_{0} – V}{V} \times 100 = \frac{671.62 – 500}{500} \times 100 \\[0.5cm] \quad \quad \quad = \mathbf{34.35 \%}

Related Answered Questions