Question 8.6: A small current loop L1 with magnetic moment 5 az A · m^2 is...

A small current loop L_{1} with magnetic moment 5a_{z}A\cdot m^{2} is located at the origin while another small loop current L_{2} with magnetic moment 3a_{y} A\cdot m^{2} is located at (4,-3,10). Determine the torque on L_{2}.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

The torque T_{2} on the loop L_{2} is due to the field B_{1} produced by loop L_{1}. Hence

T_{2}=m_{2}\times B_{1}

Since m_{1} for loop L_{1} is along a_{z}, we find B_{1} using eq. (8.22):

B=\frac{\mu_{o}m}{4\pi r^{3}}(2\cos\theta a_{r}+\sin\theta a_{\theta })

B_{1}=\frac{\mu_{o}m_{1}}{4\pi r^{3}}(2\cos\theta a_{r}+\sin\theta a_{\theta })

Using eq. (2.23):

T=m\times B=Q_{m}\ell\times B

we transform m_{2} from Cartesian to spherical coordinates:

m_{2}=3a_{y}=3(\sin\theta \sin\phi a_{r}+\cos\theta \sin\phi a_{\theta} +\cos\phi a_{\phi })

At (4,-3,10)

r=\sqrt{4^{2}+(-3)^{2}+10^{2}}=5\sqrt{5}

\tan\theta =\frac{\rho }{z}=\frac{5}{10}=\frac{1}{2}\rightarrow \sin\theta=\frac{1}{\sqrt{5}},       \cos\theta=\frac{2}{\sqrt{5}}

\tan\phi =\frac{y}{x}=\frac{-3}{4}\rightarrow \sin\phi =\frac{-3}{5},       \cos\phi =\frac{4}{5}

Hence

B_{1}=\frac{4\pi\times 10^{-7}\times5}{4\pi625\sqrt{5}}\left(\frac{4}{\sqrt{5}}a_{r}+\frac{1}{\sqrt{5}}a_{\theta}\right)=\frac{10^{-7}}{625}(4a_{r}+a_{\theta})

m_{2}=3\left[-\frac{3a_{r}}{5\sqrt{5}}-\frac{6a_{\theta}}{5\sqrt{5}}+\frac{4a_{\phi}}{5}\right]

and

T=\frac{10^{-7}(3)}{625(5\sqrt{5})}(-3a_{r}-6a_{\theta}+4\sqrt{5}a_{\phi})\times(4a_{r}+a_{\phi})

=4.293\times10^{-11}(-8.944a_{r}+35.777a_{\theta}+21a_{\phi})

=-0.384a_{r}+1.536a_{\theta}+0.9015a_{\phi}nN\cdot m

Related Answered Questions