Question 15.5: A solid 1.50-in.-diameter shaft is used in an aircraft engin...

A solid 1.50-in.-diameter shaft is used in an aircraft engine to transmit 160 hp at 2,800 rpm to a propeller that develops a thrust of 1,800 lb. Determine the magnitudes of the principal stresses and the maximum shear stress at any point on the outside surface of the shaft.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Section properties:

A=\frac{\pi}{4}(1.5  in .)^{2}=1.767146  in .^{2}            \quad J=\frac{\pi}{32}(1.5  in .)^{4}=0.497010  in .^{4}

Normal and shear stress magnitudes:

\sigma=\frac{P}{A}=\frac{1,800  lb }{1.767146  in .{ }^{2}}=1,018.592  psi ( T )

The torque in the propeller shaft is:

T=\frac{P}{\omega}=\frac{(160  hp )\left(\frac{550  lb – ft / s }{1  hp }\right)}{\left(\frac{2,800  rev }{ min }\right)\left(\frac{2 \pi  rad }{1  rev }\right)\left(\frac{1  min }{60  s }\right)}=300.121  lb – ft

 

\tau=\frac{T c}{J}=\frac{(300.121  lb – ft )(1.5  in . / 2)(12  in . / ft )}{0.497010  in .^{4}}=5,434.676  psi

(sense of shear stress cannot be established definitively from the information given)

Principal stress calculations:
The principal stress magnitudes can be computed from Eq. (12.12):

\begin{aligned}\sigma_{p 1, p 2} &=\frac{\sigma_{x}+\sigma_{y}}{2} \pm \sqrt{\left(\frac{\sigma_{x}-\sigma_{y}}{2}\right)^{2}+\tau_{x y}^{2}} \\&=\frac{(1,018.592)+(0)}{2} \pm \sqrt{\left(\frac{(1,018.592)-(0)}{2}\right)^{2}+(5,434.676)^{2}} \\&=509.296 \pm 5.458 .487\end{aligned}

 

\begin{aligned}&\sigma_{p 1}=5,970  psi \text {    and    } \sigma_{p 2}=-4,950  psi \\&\tau_{\max }=5,460  psi \quad(\text { maximum in-plane shear stress }) \\&\sigma_{\text {avg }}=509  psi ( T ) \quad \text { (normal stress on planes of maximum in-plane shear stress) }\end{aligned}

 

 

 

 

Related Answered Questions