Question 13.77: A solid 18-mm-diameter shaft is subjected to an axial load P...

A solid 18-mm-diameter shaft is subjected to an axial load P. The shaft is made of aluminum [E = 70 GPa; ν = 0.33]. A strain gage is mounted on the shaft at the orientation shown in Figure P13.77.
(a) If P = 14.7 kN, determine the strain reading that would be expected from the gage.
(b) If the gage indicates a strain value of ε = 810 με, determine the axial force P applied to the shaft.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a) From the given diameter, the cross-sectional area of the shaft is

A=\frac{\pi}{4}(18  mm )^{2}=254.46900  mm ^{2}

and thus, the normal stress in the shaft is

\sigma_{x}=\frac{P}{A}=\frac{(14.7  kN )(1,000  N / kN )}{254.46900  mm ^{2}}=57.767  MPa

At the location of the strain gage, the stresses in the shaft can be summarized as

\sigma_{x}=57.767  MPa , \quad \sigma_{y}=0  MPa , \quad \tau_{x y}=0  MPa

From Eqs. (13.21), the normal strains in the x and y directions are

\begin{aligned}&\varepsilon_{x}=\frac{1}{E}\left(\sigma_{x}-v \sigma_{y}\right)=\frac{1}{70,000  MPa }[57.767  MPa -(0.33)(0  MPa )]=825.248 \times 10^{-6}  mm / mm \\&\varepsilon_{y}=\frac{1}{E}\left(\sigma_{y}-v \sigma_{x}\right)=\frac{1}{70,000  MPa }[0  MPa -(0.33)(57.767  MPa )]=-272.332 \times 10^{-6}  mm / mm\end{aligned}

and since the shear stress is zero, the shear strain is also zero: \gamma_{x y} = 0.

Write a normal strain transformation equation for the gage oriented at θ = 145°:

\begin{aligned}\varepsilon_{n} &=\varepsilon_{x} \cos ^{2} \theta+\varepsilon_{y} \sin ^{2} \theta+\gamma_{x y} \sin \theta \cos \theta \\&=(825.248  \mu \varepsilon) \cos ^{2}\left(145^{\circ}\right)+(-272.332  \mu \varepsilon) \sin ^{2}\left(145^{\circ}\right)+(0  \mu rad ) \sin \left(145^{\circ}\right) \cos \left(145^{\circ}\right) \\&=464.155  \mu \varepsilon\end{aligned}

Therefore, the strain gage should be expected to read a normal strain of

\varepsilon_{n}=464  \mu \varepsilon

 

(b) A normal strain transformation equation can be written for the gage:

\begin{gathered}\varepsilon_{n}=\varepsilon_{x} \cos ^{2} \theta+\varepsilon_{y} \sin ^{2} \theta+\gamma_{x y} \sin \theta \cos \theta \\\therefore 810  \mu \varepsilon=\varepsilon_{x} \cos ^{2}\left(145^{\circ}\right)+\varepsilon_{y} \sin ^{2}\left(145^{\circ}\right)\end{gathered}

Recognize that there is no shear stress \tau_{x y}=0, and hence, \gamma_{x y}=0.

From Eqs. (13.21), substitute for \varepsilon_{x} \text { and } \varepsilon_{y}:

810  \mu \varepsilon=\frac{1}{E}\left(\sigma_{x}-v \sigma_{y}\right) \cos ^{2}\left(145^{\circ}\right)+\frac{1}{E}\left(\sigma_{y}-v \sigma_{x}\right) \sin ^{2}\left(145^{\circ}\right)

and eliminate terms of \sigma_{y} since \sigma_{y} = 0 for the shaft:

810  \mu \varepsilon=\frac{\sigma_{x}}{E} \cos ^{2}\left(145^{\circ}\right)-\frac{v \sigma_{x}}{E} \sin ^{2}\left(145^{\circ}\right)

Solve for \sigma_{x}:

\begin{aligned}\sigma_{x} &=\frac{(810  \mu \varepsilon) E}{\left[\cos ^{2}\left(145^{\circ}\right)-v \sin ^{2}\left(145^{\circ}\right)\right]} \\&=\frac{\left(810 \times 10^{-6}\right)(70,000  MPa )}{\left[\cos ^{2}\left(145^{\circ}\right)-(0.33) \sin ^{2}\left(145^{\circ}\right)\right]} \\&=100.810  MPa\end{aligned}

The axial load P that causes this normal stress is

P=\sigma_{x} A=\left(100.810  N / mm ^{2}\right)\left(254.46900  mm ^{2}\right)=25,653.06  N =25.7  kN

 

 

 

 

Related Answered Questions