Step I Torque transmitted by solid shaft
From Eq. (9.3),
\tau=\frac{16 M_{t}}{\pi d^{3}} (9.3).
M_{t}=\left(\frac{\pi d^{3}}{16}\right) \tau (a).
Step II Torque transmitted by hollow shaft
M_{t}=\left(\frac{J}{r}\right) \tau \quad \text { where } \quad J=\frac{\pi\left(d_{o}^{4}-d_{i}^{4}\right)}{32} .
∴ M_{t}=\frac{\pi\left(d_{o}^{4}-d_{i}^{4}\right)}{16 d_{o}} \tau (b).
Step III Outer diameter of hollow shaft
The solid and hollow shafts are equally strong in torsion. Equating (a) and (b),
d^{3}=\frac{d_{o}^{4}-d_{i}^{4}}{d_{o}} .
or d_{i}^{4}=d_{o}^{4}-d^{3} d_{o} (c).
Since the weight of hollow shaft per metre length is half of the solid shaft,
\frac{\pi\left(d_{o}^{2}-d_{i}^{2}\right)}{4}=\frac{1}{2} \times \frac{\pi d^{2}}{4} .
or d_{i}^{2}=d_{o}^{2}-\frac{d^{2}}{2} .
∴ d_{i}^{4}=\left(d_{o}^{2}-\frac{d^{2}}{2}\right)^{2} .
\text { Eliminating the term }\left(d_{i}^{4}\right) \text { from Eqs (c) and (d) } ,
d_{o}^{4}-d^{3} d_{o}=\left(d_{o}^{2}-\frac{d^{2}}{2}\right)^{2} .
\therefore \quad d_{o}^{4}-d^{3} d_{o}=d_{o}^{4}-d_{o}^{2} d^{2}+\frac{d^{4}}{4} .
or d_{o}^{2} d^{2}-d_{o} d^{3}-\frac{d^{4}}{4}=0 (e).
Equation (e) is a quadratic equation and the roots are given by,
d_{o}=\frac{d^{3} \pm \sqrt{d^{6}-4\left(d^{2}\right)\left(-\frac{d^{4}}{4}\right)}}{2 d^{2}}=\frac{d \pm \sqrt{2} d}{2} .
Taking positive root,
d_{o}=\left(\frac{d+\sqrt{2} d}{2}\right) .