A spherical shell of radius R, carrying a uniform surface charge σ, is set spinning at angular velocity ω. Find the vector potential it produces at point r (Fig. 5.45).
A spherical shell of radius R, carrying a uniform surface charge σ, is set spinning at angular velocity ω. Find the vector potential it produces at point r (Fig. 5.45).
It might seem natural to set the polar axis along ω, but in fact the integration is easier if we let r lie on the z axis, so that ω is tilted at an angle ψ. We may as well orient the x axis so that ω lies in the xz plane, as shown in Fig. 5.46. According to Eq. 5.66,
A=\frac{\mu}{4\pi}\int{\frac{I}{\eta }d\acute{l} }=\frac{\mu_0I}{4\pi}\int{\frac{I}{\eta }d\acute{I} }; A= \frac{\mu_0}{4\pi}\int{\frac{K}{\eta } }d\acute{a}. (5.66)
A(r)=\frac{\mu_0}{4\pi}\int{\frac{K(\acute{r})}{\eta } d\acute a,}where K=\sigma v,\eta =\sqrt{R^2+r^2-2Rr\cos\acute{\theta}}, and d\acute{a}=R^2\sin\acute{\theta}d\acute{\theta}d\acute{\phi}. Now the velocity of a point \acute{r} in a rotating rigid body is given by ω × \acute{r}; in this case,
v = ω ×\acute{r}=\begin{vmatrix} \hat{x} & \hat{y}&\hat{z} \\ \omega \sin\psi & 0&\omega \cos\psi \\ R\sin\acute{\theta}\cos\acute{\phi}&R\sin\acute{\theta}\sin\acute{\phi}&R\cos\acute{\theta}\end{vmatrix} \\=R\omega [-(\cos\psi \sin\acute{\theta}\sin\acute{\phi})\hat{x}+(\cos\psi \sin\acute{\theta}\cos\acute{\theta}-\sin\psi \cos\acute{\theta})\hat{y}\\+(sin\psi \sin\acute{\theta}\sin\acute{\phi})\hat{z}].Notice that each of these terms, save one, involves either sin \acute{\phi} or \cos \acute{\phi}. Since
\int_{0}^{2\pi}{\sin\acute{\phi}d\acute{\phi}}=\int_{0}^{2\pi}{\cos\acute{\phi}d\acute{\phi}}=0,such terms contribute nothing. There remains
A(r)=-\frac{\mu_0R^3\sigma \omega \sin\psi }{2}\left(\int_{0}^{\pi}{\frac{\cos\acute{\theta}\sin\acute{\theta}}{\sqrt{R^2+r62-2Rr\cos\acute{\theta}} }d\acute{\theta} } \right)\hat{y}.Letting u\equiv \cos\acute{\theta}, the integral becomes
\int_{-1}^{+1}{\frac{u}{\sqrt{R^2+r^2-2Rru} } du}=-\frac{(R^2+r^2+Rru)}{3R^2r^2}\sqrt{R^2+r^2-2Rru}\mid ^{+1}_{-1}\\=-\frac{1}{3R^2r^2}[(R^2+r^2+Rr)\left|R-r\right|\\-(R^2+r^2-Rr)(R+r) ] .If the point r lies inside the sphere, then R > r , and this expression reduces to (2r/3R^2); if r lies outside the sphere, so that R < r , it reduces to (2R/3r^2). Noting that (ω × r) = −ωr \sin ψ \hat{y}, we have, finally,
A(r)=\begin{cases}\frac{\mu_0R\sigma }{3}(\omega \times r), for points inside the sphere, \\ \frac{\mu_0R^4\sigma }{3r^3}(\omega \times r), for points outside the sphere.\end{cases} (5.68)
Having evaluated the integral, I revert to the “natural” coordinates of Fig. 5.45,in which ω coincides with the z axis and the point r is at (r, θ, φ):
A(r,\theta,\phi)=\begin{cases}\frac{\mu_0R\omega \sigma }{3}r\sin\theta\acute{\phi}, (r\leq R), \\ \frac{\mu_0R^4\omega \sigma }{3}\frac{\sin\theta}{r^2} , (r\geq R).\end{cases} (5.69)
Curiously, the field inside this spherical shell is uniform:
B=\nabla\times A=\frac{2\mu_0R\omega \sigma }{3}(\cos\theta\hat{r}-\sin\theta \hat{\theta})=\frac{2}{3}\mu_0\sigma R\omega \hat{z}=\frac{2}{3}\mu_0\sigma R\pmb{\omega} . (5.70)