Question 5.11: A spherical shell of radius R, carrying a uniform surface ch...

A spherical shell of radius R, carrying a uniform surface charge σ, is set spinning at angular velocity ω. Find the vector potential it produces at point r (Fig. 5.45).

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

It might seem natural to set the polar axis along ω, but in fact the integration is easier if we let r lie on the z axis, so that ω is tilted at an angle ψ. We may as well orient the x axis so that ω lies in the xz plane, as shown in Fig. 5.46. According to Eq. 5.66,

A=\frac{\mu}{4\pi}\int{\frac{I}{\eta }d\acute{l} }=\frac{\mu_0I}{4\pi}\int{\frac{I}{\eta }d\acute{I} };        A= \frac{\mu_0}{4\pi}\int{\frac{K}{\eta } }d\acute{a}.         (5.66)

A(r)=\frac{\mu_0}{4\pi}\int{\frac{K(\acute{r})}{\eta } d\acute a,}

where  K=\sigma v,\eta =\sqrt{R^2+r^2-2Rr\cos\acute{\theta}}, and d\acute{a}=R^2\sin\acute{\theta}d\acute{\theta}d\acute{\phi}. Now the velocity of a point \acute{r}  in a rotating rigid body is given by ω × \acute{r}; in this case,

v = ω ×\acute{r}=\begin{vmatrix} \hat{x} & \hat{y}&\hat{z} \\ \omega \sin\psi & 0&\omega \cos\psi \\ R\sin\acute{\theta}\cos\acute{\phi}&R\sin\acute{\theta}\sin\acute{\phi}&R\cos\acute{\theta}\end{vmatrix} \\=R\omega [-(\cos\psi \sin\acute{\theta}\sin\acute{\phi})\hat{x}+(\cos\psi \sin\acute{\theta}\cos\acute{\theta}-\sin\psi \cos\acute{\theta})\hat{y}\\+(sin\psi \sin\acute{\theta}\sin\acute{\phi})\hat{z}].

Notice that each of these terms, save one, involves either sin \acute{\phi}   or  \cos \acute{\phi}. Since

\int_{0}^{2\pi}{\sin\acute{\phi}d\acute{\phi}}=\int_{0}^{2\pi}{\cos\acute{\phi}d\acute{\phi}}=0,

such terms contribute nothing. There remains

A(r)=-\frac{\mu_0R^3\sigma \omega \sin\psi }{2}\left(\int_{0}^{\pi}{\frac{\cos\acute{\theta}\sin\acute{\theta}}{\sqrt{R^2+r62-2Rr\cos\acute{\theta}} }d\acute{\theta} } \right)\hat{y}.

Letting u\equiv \cos\acute{\theta}, the integral becomes

\int_{-1}^{+1}{\frac{u}{\sqrt{R^2+r^2-2Rru} } du}=-\frac{(R^2+r^2+Rru)}{3R^2r^2}\sqrt{R^2+r^2-2Rru}\mid ^{+1}_{-1}\\=-\frac{1}{3R^2r^2}[(R^2+r^2+Rr)\left|R-r\right|\\-(R^2+r^2-Rr)(R+r) ] .

If the point r lies inside the sphere, then R > r , and this expression reduces to (2r/3R^2); if r lies outside the sphere, so that R < r , it reduces to (2R/3r^2). Noting that (ω × r) = −ωr \sin ψ \hat{y}, we have, finally,

   A(r)=\begin{cases}\frac{\mu_0R\sigma }{3}(\omega \times r),           for    points   inside   the   sphere, \\ \frac{\mu_0R^4\sigma }{3r^3}(\omega \times r),                  for    points    outside    the     sphere.\end{cases}                   (5.68)

Having evaluated the integral, I revert to the “natural” coordinates of Fig. 5.45,in which ω coincides with the z axis and the point r is at (r, θ, φ):

A(r,\theta,\phi)=\begin{cases}\frac{\mu_0R\omega \sigma }{3}r\sin\theta\acute{\phi},         (r\leq R), \\ \frac{\mu_0R^4\omega \sigma }{3}\frac{\sin\theta}{r^2} ,          (r\geq R).\end{cases}       (5.69)

Curiously, the field inside this spherical shell is uniform:

B=\nabla\times A=\frac{2\mu_0R\omega \sigma }{3}(\cos\theta\hat{r}-\sin\theta \hat{\theta})=\frac{2}{3}\mu_0\sigma R\omega \hat{z}=\frac{2}{3}\mu_0\sigma R\pmb{\omega} .      (5.70)

 

5.46

Related Answered Questions