Question 6.14: A square base at Ts,0 = 80^◦C [rendered in Figure Ex. 6.14(a...

A square base at T_{s,0} = 80^{\circ }C [rendered in Figure (a)], with each side having a dimension a = 10 cm, has pure aluminum pin fins of diameter D = 7 mm and length L = 70 mm, attached to it. There are a total of N_{f} = 10 × 10 = 100 fins. The air flows across the fins at a velocity of u_{f,∞} = 1 m/s, and temperature T_{f,∞} = 20^{\circ} C. Assume that the isolated cylinder \left\langle Nu\right\rangle _{D} relation in Table is applicable. (We can make this assumption since the fluid flow through the fins can be treated as bounded fluid. A more accurate correlation will be given in Section 7.4.4, where we will discuss interacting discontinuous solid surfaces.)

(a) Draw the thermal circuit diagram.
(b) Determine the Nusselt number \left\langle Nu\right\rangle _{D}.
(c) Determine the fin efficiency.
(d) Determine the total heat flow rate from the base −Q_{s} = Q_{ku}(W).
Determine the thermophysical properties at T = 300 K.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a) The thermal circuit diagram is given in Figure (b). The rate of surfaceconvection heat transfer from the bare and finned areas of the base is given by Q_{ku}=\left\langle Q_{ku}\right\rangle _{s-\infty }=(A_{b}+A_{f}\eta _{f})\left\langle Nu\right\rangle _{w}\frac{k_{f}}{w}(T_{s,0}-T_{f,\infty }) . Here we use the circular fins and replace \left\langle Nu\right\rangle _{w}k_{f} /w  with \left\langle Nu\right\rangle _{D}k_{f} /D,
i.e.,

−Q_{s} = Q_{ku} = [(A − N_{f} A_{k}) + N_{f} A_{ku,f} η_{f} ]\left\langle Nu\right\rangle _{D}\frac{k_{f}}{D} (T_{s,0}-T_{f,\infty })

(b) To determine the Nusselt number \left\langle Nu\right\rangle _{D}, the correlation we use (an approximation) is from Table, i.e.,

\left\langle Nu\right\rangle _{D}=a_{1}Re_{D}^{a_{2}}Pr^{1/3}              Table

where, as defined in \left\langle Q_{ku}\right\rangle _{L( or D)}=\frac{T_{s}-T_{f,\infty }}{\left\langle R_{ku}\right\rangle_{L(or D)} } =A_{ku}\frac{k_{f}}{L(or D)}\left\langle Nu\right\rangle _{L(or D)}(T_{s}-T_{f,\infty }),          Re_{L(or D)}=\frac{u_{f,\infty }L(or D)}{v_{f}} ,

Re_{D}=\frac{u_{f,\infty }}{v_{f}}

The thermophysical properties for air are obtained from Table at T = 300 K, i.e.,

ν_{f} = 15.66 × 10^{−6} m^{2}/s                    Table
k_{f} = 0.0267 W/m-K                          Table
Pr = 0.69                                     Table
Also from Table , we have for aluminum (pure) at T = 300 K
k_{s} = 237 W/m-K                   Table
Then

Re_{D}=\frac{1(m/s) × 7 × 10^{-3}(m)}{15.66 × 10^{−6} (m^{2}/s)} =447.0  

From Table

a_{1} = 0.683             , a_{2} = 0.466                       Table
\left\langle Nu\right\rangle _{D} = 0.683(447.0)^{0.466}(0.69)^{1/3} = 10.37.
(c) The fin efficiency ηf is given by \eta _{f}=\frac{tanh(mL_{c})}{mL_{c}}           ,0\leq \eta _{f}\leq 1         fin efficiency

=\frac{tanh[(R_{k,s}/\left\langle R_{ku}\right\rangle_{w} )^{1/2}]}{(R_{k,s}/\left\langle R_{ku}\right\rangle_{w} )^{1/2}} =\frac{tanh(Bi_{w}^{1/2})}{Bi_{w}^{1/2}}        as

  \eta _{f}=\frac{tanh(mL_{c})}{mL_{c}}  

where L_{c} and m are given by L_{c}=L+\frac{D}{4} and m=\left(\frac{P_{ku,f}\left\langle Nu\right\rangle _{w}k_{f}}{A_{k}k_{s}w} \right) ^{1/2}=\left(\frac{P_{ku,f}\left\langle Nu\right\rangle _{w}\frac{k_{f}}{w}\frac{L_{c}^{2}}{L_{c}^{2}} }{A_{k}k_{s}}\right) ^{1/2}=\left(\frac{P_{ku,f}L_{c}}{A_{k}}\frac{\left\langle Nu\right\rangle _{w}\frac{k_{f}}{w}}{k_{s}/L_{c}} \right)^{1/2} \frac{1}{L_{c}} =\left(\frac{R_{k,s}}{\left\langle R_{ku}\right\rangle_{w} } \right) ^{1/2}\frac{1}{L_{c}} \equiv Bi_{w}^{1/2}\frac{1}{L_{c}} , i.e.,

L_{c}=L+\frac{D}{4}  

 

m=\left(\frac{P_{ku,f}\left\langle Nu\right\rangle _{D}k_{f}}{A_{k}k_{s}D} \right) ^{1/2}

where P_{ku,f} = πD, and A_{k} = πD^{2}/4. Then

m=\left[\frac{\pi D\left\langle Nu\right\rangle_{D}k_{f} }{(\pi D^{2}/4)k_{s}D} \right] ^{1/2}

or

m=\left(\frac{4 \left\langle Nu\right\rangle_{D}k_{f} }{D^{2}k_{s}} \right) ^{1/2}=\left(\frac{4 \left\langle Nu\right\rangle_{D}}{D^{2}}\frac{k_{f}}{k_{s}} \right) ^{1/2}

 

=\left[\frac{4 × 10.37}{(7 × 10^{−3} )^{2} (m^{2} )} \frac{0.0267(W/m-K)}{237(W/m-K)} \right] ^{1/2}= 9.766   1/m. 

Then

mL_{c} = 9.766(1/m) × [7 × 10^{−2} (m) + (7 × 10^{−3} /4)(m)] = 0.7006. 

From Table, tanh(0.7006) = 0.6044, and for \eta _{f} we have

\eta _{f}=\frac{tanh(ml_{c})}{mL_{c}} =\frac{0.6044}{0.7006} = 0.8627        fin efficiency.

(d) The relation for Q_{ku}    was listed earlier, and we have

A_{ku,f} = P_{ku,f} L_{c} = πD(L + D/4)

 

Q_{ku} = [(a × a − N_{f} πD^{2} /4) + N_{f} πD(L + D/4) × \eta _{f} ]\left\langle Nu\right\rangle _{D}\frac{k_{f}}{D}  (T_{s,0} − T_{f,∞}) 

 

Q_{ku} = [(0.1)^{2} (m)^{2} − 10^{2} × π × (7 × 10^{−3})^{2} (m)^{2} /4 + 10^{2} × π × 7 × 10^{−3} (m) 

 

× (7 × 10^{−2} + 7 × 10^{−3} /4)(m) × 0.8627] × 10.37 

 

× \frac{0.0267(W/m-K)}{7 × 10^{−3}(m)} × (80 − 20)(^{\circ }C) 

 

= [0.01(m)^{2} − 3.847 × 10^{−3} (m)^{2} + 0.1361(m)^{2} ] × 39.55(W/m-K) × 60(^{\circ } C)

= 345.2 W.

b
22_1
14
1
6_7

Related Answered Questions