Question 9.10: A squirrel-cage induction motor has a slip of 4% at full loa...

A squirrel-cage induction motor has a slip of 4% at full load. Its starting current is five times the full-load current. The stator impedance and magnetizing current may be neglected; the rotor resistance is assumed constant.

(a) Calculate the maximum torque and the slip at which it would occur.

(b) Calculate the starting torque.

Express torques in pu of the full-load torque.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a)                              I_{s}^{2}=\frac{V^{2}}{R_{2}^{\prime 2}+X_{2}^{2}} ;(s=1)                              (i)

I_{f l}^{2}=\frac{V^{2}}{\left(R_{2}^{\prime 2} / s_{f l}\right)^{2}+X_{2}^{\prime 2}}                                        (ii)

Dividing Eq. (i) by (ii)

\left(\frac{I_{S}}{I_{f l}}\right)^{2}=\frac{\left(R_{2}^{\prime} / s_{f l}\right)^{2}+X_{2}^{\prime 2}}{R_{2}^{\prime 2}+X_{2}^{\prime 2}}=\frac{s_{\max , T}^{2}+s_{f l}^{2}}{s_{f l}^{2}\left(s_{\max , T}^{2}+1\right)}                                                 (iii)

Substituting the values                             25=\frac{s_{\max , T}^{2}+(0.04)^{2}}{(0.04)^{2}\left(s_{\max , T}^{2}+1\right)}

Or                                       s_{\max , T}=0.2 \quad \text { or } \quad 20 \%

 

T_{\max }=\frac{3}{\omega_{s}} \cdot \frac{0.5 V^{2}}{X_{2}^{\prime 2}}                                          (iv)

T_{f 1}=\frac{3}{\omega_{s}} \cdot \frac{V^{2}\left(R_{2}^{\prime 2} / s_{f l}\right)}{\left(R_{2}^{\prime 2} / s_{f l}\right)^{2}+X_{2}^{\prime 2}}                                (v)

Dividing Eq. (iv) by (v)

\frac{T_{\max }}{T_{f l}}=0.5 \times \frac{R_{2}^{2}+s_{f l}^{2} X_{2}^{\prime 2}}{R_{2}^{\prime} X_{2}^{\prime} s_{f l}}=0.5 \times \frac{s_{\max , T}^{2}+s_{f l}^{2}}{s_{\max , T} s_{f l}}

 

=0.5 \times \frac{(0.2)^{2}+(0.04)^{2}}{0.2 \times 0.04}=2.6

Or                                      T_{\max }=2.6 pu

(b) As per Eq. (9.60)

\frac{T_{s}}{T_{f l}}=\left(\frac{I_{s}}{I_{f l}}\right)^{2} s_{f 1}=(5)^{2} \times 0.04=1

Or                                 T_{s}=1 pu

Related Answered Questions