Question 3.57: A stationary electric dipole p = p zˆ is situated at the ori...

A stationary electric dipole p =p \hat{z} is situated at the origin. A positive point charge q (mass m) executes circular motion (radius s) at constant speed in the field of the dipole. Characterize the plane of the orbit. Find the speed, angular momentum and total energy of the \text { charge. }^{29}\left[\text { Answer: } L=\sqrt{q p m / 3 \sqrt{3} \pi \epsilon_{0}}\right]

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Symmetry suggests that the plane of the orbit is perpendicular to the z axis, and since we need a centripetal force, pointing in toward the axis, the orbit must lie at the bottom of the field loops (Fig. 3.37a), where the z component of the field is zero. Referring to Eq. 3.104,

E _{ dip }( r )=\frac{1}{4 \pi \epsilon_{0}} \frac{1}{r^{3}}[3( p \cdot \hat{ r }) \hat{ r }- p ]                              (3.104)

E \cdot \hat{ z }=0 \Rightarrow 3( p \cdot \hat{ r })(\hat{ r } \cdot \hat{ z })- p \cdot \hat{ z }=0, \text { or } 3 \cos ^{2} \theta-1=0 . \quad \text { So } \cos ^{2} \theta=1 / 3, \cos \theta=-1 / \sqrt{3}, \sin \theta=\sqrt{2 / 3}, z / s=\tan \theta \Rightarrow z=-\sqrt{2} s . The field at the orbit is (Eq. 3.103)

E _{ dip }(r, \theta)=\frac{p}{4 \pi \epsilon_{0} r^{3}}(2 \cos \theta \hat{ r }+\sin \theta \hat{ \theta })                   (3.103)

E =\frac{p}{4 \pi \epsilon_{0} r^{3}}\left(-2 \frac{1}{\sqrt{3}} \hat{ r }+\sqrt{\frac{2}{3}} \hat{ \theta }\right)

 

=\frac{p}{4 \pi \epsilon_{0} r^{3}} \sqrt{\frac{2}{3}}[-\sqrt{2}(\sin \theta \cos \phi \hat{ x }+\sin \theta \sin \phi \hat{ y }+\cos \theta \hat{ z })+(\cos \theta \cos \phi \hat{ x }+\cos \theta \sin \phi \hat{ y }-\sin \theta \hat{ z })]

 

=\frac{p}{4 \pi \epsilon_{0} r^{3}} \sqrt{\frac{2}{3}}[(-\sqrt{2} \sin \theta+\cos \theta) \cos \phi \hat{ x }+(-\sqrt{2} \sin \theta+\cos \theta) \sin \phi \hat{ y }+(-\sqrt{2} \cos \theta-\sin \theta) \hat{ z }]

 

=\frac{p}{4 \pi \epsilon_{0} r^{3}} \sqrt{\frac{2}{3}}\left[\left(-\sqrt{2} \sqrt{\frac{2}{3}}-\frac{1}{\sqrt{3}}\right)(\cos \phi \hat{ x }+\sin \phi \hat{ y })+\left(\sqrt{2} \frac{1}{\sqrt{3}}-\sqrt{\frac{2}{3}}\right) \hat{ z }\right]

 

=\frac{p}{4 \pi \epsilon_{0} r^{3}} \sqrt{\frac{2}{3}}[-\sqrt{3}(\cos \phi \hat{ x }+\sin \phi \hat{ y })]=-\frac{p}{4 \pi \epsilon_{0} r^{3}} \sqrt{2} \hat{ s }=-\frac{p}{3 \sqrt{3} \pi \epsilon_{0} s^{3}} \hat{ s } .

\text { (I used } s=r \sin \theta=r \sqrt{2 / 3} \text {, in the last step.) }

The centripetal force is

F=q E=-\frac{q p}{3 \sqrt{3} \pi \epsilon_{0} s^{3}}=-\frac{m v^{2}}{s} \quad \Rightarrow \quad v^{2}=\frac{q p}{3 \sqrt{3} \pi \epsilon_{0} m s^{2}} \quad \Rightarrow \quad v=\frac{1}{s} \sqrt{\frac{q p}{3 \sqrt{3} \pi \epsilon_{0} m}} .

The angular momentum is

L=s m v=\sqrt{\frac{q p m}{3 \sqrt{3} \pi \epsilon_{0}}} ,

the same for all orbits, regardless of their radius (!), and the energy is

W=\frac{1}{2} m v^{2}+q V=\frac{1}{2} \frac{q p}{3 \sqrt{3} \pi \epsilon_{0} s^{2}}+\frac{q}{4 \pi \epsilon_{0}} \frac{p \cos \theta}{r^{2}}=\frac{q p}{6 \sqrt{3} \pi \epsilon_{0} s^{2}}-\frac{q p}{4 \pi \epsilon_{0} \sqrt{3}(3 / 2) s^{2}}=0 .

3.37a

Related Answered Questions