Question 5.60: A steel [E = 30,000 ksi, α = 6.6 ×10^−6/°F] pipe column (1) ...

A steel [E = 30,000 ksi, α = 6.6 ×10^{-6}/°F] pipe column (1) with a crosssectional area of A_{1}=5.60  in. ^{2} is connected at flange B to an aluminum alloy [E = 10,000 ksi, α = 12.5 × 10^{-6}/°F] pipe (2) with a crosssectional area of A_{2}=4.40  in. ^{2} . The assembly (shown in Figure P5.60) is connected to rigid supports at A and C. It is initially unstressed at a temperature of 90°F.
(a) At what temperature will the normal stress in steel pipe (1) be reduced to zero?
(b) Determine the normal stresses in steel pipe (1) and aluminum pipe (2) when the temperature reaches –10°F.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Equilibrium: Consider a FBD of flange B. Sum forces in the horizontal direction to obtain:

\Sigma F_{x}=-F_{1}+F_{2}-60  kips =0                              (a)

Geometry of Deformations: 

\delta_{1}+\delta_{2}=0                                    (b)

Force-Temperature-Deformation Relationships: 

\delta_{1}=\frac{F_{1} L_{1}}{A_{1} E_{1}}+\alpha_{1} \Delta T_{1} L_{1} \quad \delta_{2}=\frac{F_{2} L_{2}}{A_{2} E_{2}}+\alpha_{2} \Delta T_{2} L_{2}                              (c)

Compatibility Equation: Substitute Eqs. (c) into Eq. (b) to derive the compatibility equation:

\frac{F_{1} L_{1}}{A_{1} E_{1}}+\alpha_{1} \Delta T_{1} L_{1}+\frac{F_{2} L_{2}}{A_{2} E_{2}}+\alpha_{2} \Delta T_{2} L_{2}=0                              (d)

Solve the Equations: Set F_{1} = 0 and solve Eq. (a) to find F_{2} = 60 kips. Substitute these values forF_{1} and F_{2} into Eq. (d) along with the observation that the temperature change for both axial members is the same (i.e., \Delta T_{1}=\Delta T_{2}=\Delta T) and solve for ΔT:

\Delta T=\frac{-\frac{F_{1} L_{1}}{A_{1} E_{1}}-\frac{F_{2} L_{2}}{A_{2} E_{2}}}{\alpha_{1} L_{1}+\alpha_{2} L_{2}}=\frac{0-\frac{(60  kips )(144  in .)}{\left(4.40  in .^{2}\right)(10,000  ksi )}}{\left(6.6 \times 10^{-6} /{ }^{\circ} F \right)(120  in .)+\left(12.5 \times 10^{-6} /{ }^{\circ} F \right)(144  in .)}=-75.758^{\circ} F

Since the pipes are initially at a temperature 90°F, the temperature at which the normal stress in steel pipe (1) is reduced to zero is

T=90^{\circ} F -75.748^{\circ} F =14.24^{\circ} F

(b) Solve Eq. (a) for F_{2} to obtain

F_{2}=F_{1}+60  kips                            (e)

When the temperature reaches −10°F, the total change in temperature is ΔT = −100°F. Substitute this value along with Eq. (e) into the compatibility equation [Eq. (d)] and derive an expression for F_{1}:

\begin{gathered}\frac{F_{1} L_{1}}{A_{1} E_{1}}+\frac{\left(F_{1}+60 kips \right) L_{2}}{A_{2} E_{2}}=-\alpha_{1} \Delta T L_{1}-\alpha_{2} \Delta T L_{2} \\F_{1}\left[\frac{L_{1}}{A_{1} E_{1}}+\frac{L_{2}}{A_{2} E_{2}}\right]+\frac{(60 kips ) L_{2}}{A_{2} E_{2}}=-\Delta T\left[\alpha_{1} L_{1}+\alpha_{2} L_{2}\right] \\F_{1}\left[\frac{L_{1}}{A_{1} E_{1}}+\frac{L_{2}}{A_{2} E_{2}}\right]=-\Delta T\left[\alpha_{1} L_{1}+\alpha_{2} L_{2}\right]-\frac{(60 kips ) L_{2}}{A_{2} E_{2}} \\F_{1}=\frac{-\Delta T\left[\alpha_{1} L_{1}+\alpha_{2} L_{2}\right]-\frac{(60 kips ) L_{2}}{A_{2} E_{2}}}{\frac{L_{1}}{A_{1} E_{1}}+\frac{L_{2}}{A_{2} E_{2}}}\end{gathered}

and compute F_{1}:

F_{1}=\frac{-\left(-100^{\circ} F \right)\left[\left(6.6 \times 10^{-6}\right)(120  in .)+\left(12.5 \times 10^{-6}\right)(144  in .)\right]-\frac{(60  kips )(144  in .)}{\left(4.40  in.^{2}\right)(10,000  ksi )}}{\frac{120  in .}{\left(5.60  in .^{2}\right)(30,000  ksi )}+\frac{144  in .}{\left(4.40  in .^{2}\right)(10,000  ksi )}}

 

\begin{aligned}&=\frac{0.259200  in. -0.196364  in .}{714.2857 \times 10^{-6}  in . / kip +3,272.7273 \times 10^{-6}  in . / kip }=\frac{0.062836  in .}{3,987.0130 \times 10^{-6}  in . / kip } \\&=15.7602  kips\end{aligned}

 

From Eq. (a), F_{2} has a value of

F_{2}=F_{1}+60  kips =15.7602  kips +60  kips =75.7602  kips

(a) Normal Stresses: The normal stresses in each axial member can now be calculated:

\begin{aligned}&\sigma_{1}=\frac{F_{1}}{A_{1}}=\frac{15.7602  kips }{5.60  in .^{2}}=2.8143  ksi =2.81  ksi ( T ) \\&\sigma_{2}=\frac{F_{2}}{A_{2}}=\frac{75.7602  kips }{4.40  in .^{2}}=17.2182  ksi =17.22  ksi ( T )\end{aligned}

 

 

 

5.60'

Related Answered Questions