Section properties:
\begin{array}{ll}A=\frac{\pi}{4}(20 mm )^{2}=314.159 mm ^{2} & J=\frac{\pi}{32}(20 mm )^{4}=15,707.963 mm ^{4} \\Q=\frac{(20 mm )^{3}}{12}=666.667 mm ^{3} & I_{y}=I_{z}=\frac{\pi}{64}(20 mm )^{4}=7,853.982 mm ^{4}\end{array}

__________________________________________________________________________________________________
Equilibrium of entire shaft:
\begin{aligned}&\Sigma F_{z}=-A_{z}-D_{z}+300 N +2,100 N +1,100 N +200 N =0 \\&\Sigma M_{A, y \text { axis }}=-(300 N )(150 mm )-(2,100 N )(150 mm ) \\&\quad-(1,100 N )(450 mm )-(200 N )(450 mm )+(600 mm ) D_{z}=0\end{aligned}
therefore
D_{z}=1,575 N \text { and } A_{z}=2,125 N
__________________________________________________________________________________________________

__________________________________________________________________________________________________
Detail of equivalent forces at H and K: Detail of equivalent moments at H and K:

\begin{aligned}F_{x} &=0 N \\F_{y} &=0 N \\F_{z} &=1,100 N +200 N -1,575 N \\&=-275 N\end{aligned} \begin{aligned}M_{x}=&(1,100 N )(120 mm )-(200 N )(120 mm ) \\=& 108,000 N – mm \\M_{y}=&(1,575 N )(300 mm )-(1,100 N )(150 mm ) \\&-(200 N )(150 mm )=277,500 N – mm \\M_{z}=& 0 N – mm\end{aligned}
__________________________________________________________________________________________________
Each of the non-zero forces and moments will be evaluated to determine whether stresses are created at the point of interest.
Consider point H.
Force F _{z} creates a transverse shear stress in the xz plane at H. The magnitude of this shear stress is:
\tau_{x z}=\frac{(275 N )\left(666.667 mm ^{3}\right)}{\left(7,853.982 mm ^{4}\right)(20 mm )}=1.167 MPa
Moment M _{ x }, which is a torque, creates a torsion shear stress in the xz plane at H. The magnitude of this shear stress is:
\tau_{x z}=\frac{M_{x} c}{J}=\frac{(108,000 N – mm )(20 mm / 2)}{15,707.963 mm ^{4}}=68.755 MPa
Moment M _{ y } does not create bending stress at H because H is located on the neutral axis for bending about the y axis.

Summary of stresses at H:
\begin{aligned}\sigma_{x} &=0 MPa \\\sigma_{z} &=0 MPa \\\tau_{x z} &=-1.167 MPa +68.755 MPa =67.588 MPa\end{aligned}
Principal stress calculations for point H:
\begin{aligned}\sigma_{p 1, p 2} &=\frac{(0 MPa )+(0 MPa )}{2} \pm \sqrt{\left(\frac{(0 MPa )-(0 MPa )}{2}\right)^{2}+(-67.588 MPa )^{2}} \\&=0 MPa \pm 67.588 MPa\end{aligned}
therefore, \sigma_{p 1}=67.588 MPa and \sigma_{p 2}=-67.588 MPa
Consider point K.
Force F _{z} does not cause either a normal stress or a shear stress at K.
Moment M _{x}, which is a torque, creates a torsion shear stress in the xy plane at K. The magnitude of this shear stress is:
\tau_{x y}=\frac{M_{x} c}{J}=\frac{(108,000 N – mm )(20 mm / 2)}{15,707.963 mm ^{4}}=68.755 MPa
Moment M _{y} creates bending stress at K. The magnitude of this stress is:
\sigma_{x}=\frac{M_{y} z}{I_{y}}=\frac{(277,500 N – mm )(20 mm / 2)}{7,853.982 mm ^{4}}=353.324 MPa
Moment M _{z} does not create bending stress at K because K is located on the neutral axis for bending about the z axis.

Summary of stresses at K:
\begin{aligned}\sigma_{x} &=353.324 MPa \\\sigma_{y} &=0 MPa \\\tau_{x y} &=-68.755 MPa\end{aligned}
Principal stress calculations for point K:
\begin{aligned}\sigma_{p 1, p 2} &=\frac{(353.324 MPa )+(0 MPa )}{2} \pm \sqrt{\left(\frac{(353.324 MPa )-(0 MPa )}{2}\right)^{2}+(-68.755 MPa )^{2}} \\&=176.662 MPa \pm 189.570 MPa\end{aligned}
therefore, \sigma_{p 1}=366.232 MPa and \sigma_{p 2}=-12.908 MPa
(a) Maximum-Shear-Stress Theory
Element H:
\left|\sigma_{p 1}-\sigma_{p 2}\right|=|67.588 MPa -(-67.588 MPa )|=135.176 MPa
The factor of safety associated with this state of stress is:
FS _{H}=\frac{350 MPa }{135.176 MPa }=2.59
Element K:
\left|\sigma_{p 1}-\sigma_{p 2}\right|=|366.232 MPa -(-12.908 MPa )|=379.140 MPa
The factor of safety associated with this state of stress is:
FS _{K}=\frac{350 MPa }{379.140 MPa }=0.923
(b) Mises equivalent stresses at points H and K:
Element H:
\begin{aligned}\sigma_{M, H} &=\left[\sigma_{p 1}^{2}-\sigma_{p 1} \sigma_{p 2}+\sigma_{p 2}^{2}\right]^{1 / 2} \\&=\left[(67.588 MPa )^{2}-(67.588 MPa )(-67.588 MPa )+(-67.588 MPa )^{2}\right]^{1 / 2} \\&=117.066 MPa =117.1 MPa\end{aligned}
Element K:
\begin{aligned}\sigma_{M, K} &=\left[\sigma_{p 1}^{2}-\sigma_{p 1} \sigma_{p 2}+\sigma_{p 2}^{2}\right]^{1 / 2} \\&=\left[(366.232 MPa )^{2}-(366.232 MPa )(-12.908 MPa )+(-12.908 MPa )^{2}\right]^{1 / 2} \\&=372.853 MPa =373 MPa\end{aligned}
(c) Maximum-Distortion-Energy Theory:
Element H:
FS _{H}=\frac{350 MPa }{117.066 MPa }=2.99
Element K:
FS _{K}=\frac{350 MPa }{372.853 MPa }=0.939