Section properties:
\begin{array}{ll}A=\frac{\pi}{4}(20 mm )^{2}=314.159 mm ^{2} & J=\frac{\pi}{32}(20 mm )^{4}=15,707.963 mm ^{4} \\Q=\frac{(20 mm )^{3}}{12}=666.667 mm ^{3} & I_{y}=I_{z}=\frac{\pi}{64}(20 mm )^{4}=7,853.982 mm ^{4}\end{array}

__________________________________________________________________________________________________
Equilibrium of entire shaft:
\begin{aligned}&\Sigma F_{y}=A_{y}+D_{y}+1,400 N +200 N =0 \\&\Sigma F_{z}=-A_{z}-D_{z}+1,100 N +300 N =0 \\&\Sigma M_{A, y \text { axis }}=-(1,100 N )(480 mm )-(300 N )(480 mm )+(640 mm ) D_{z}=0 \\&\Sigma M_{A, z \text { axis }}=(1,400 N )(160 mm )+(200 N )(160 mm )+(640 mm ) D_{y}=0\end{aligned}
therefore
D_{y}=-400 N , A_{y}=-1,200 N , D_{z}=1,050 N , \text { and } A_{z}=350 N
__________________________________________________________________________________________________

__________________________________________________________________________________________________
Detail of equivalent forces at H and K: Detail of equivalent moments at H and K:

\begin{aligned}F_{x} &=0 N \\F_{y} &=-400 N \\F_{z} &=1,100 N +300 N -1,050 N \\&=350 N\end{aligned} \begin{gathered}M_{x}=(1,100 N )(135 mm / 2)-(300 N )(135 mm / 2) \\=54,000 N – mm \\M_{y}=(1,050 N )(320 mm )-(1,100 N )(160 mm ) \\\quad-(300 N )(160 mm )=112,000 N – mm \\M_{z}=-(400 N )(320 mm )=-128,000 N – mm\end{gathered}
__________________________________________________________________________________________________
Each of the non-zero forces and moments will be evaluated to determine whether stresses are created at the point of interest.
Consider point H.
Force F _{ y } does not cause either a normal stress or a shear stress at H.
Force F _{ z } creates a transverse shear stress in the xz plane at H. The magnitude of this shear stress is:
\tau_{x z}=\frac{(350 N )\left(666.667 mm ^{3}\right)}{\left(7,853.982 mm ^{4}\right)(20 mm )}=1.485 MPa
Moment M _{x}, which is a torque, creates a torsion shear stress in the xz plane at H. The magnitude of this shear stress is:
\tau_{x z}=\frac{M_{x} c}{J}=\frac{(54,000 N – mm )(20 mm / 2)}{15,707.963 mm ^{4}}=34.377 MPa
Moment M _{y} does not create bending stress at H because H is located on the neutral axis for bending about the y axis.
Moment M _{z} creates bending stress at H. The magnitude of this stress is:
\sigma_{x}=\frac{M_{z} y}{I_{z}}=\frac{(128,000 N – mm )(20 mm / 2)}{7,853.982 mm ^{4}}=162.975 MPa

Summary of stresses at H:
\begin{aligned}\sigma_{x} &=162.975 MPa \\\sigma_{z} &=0 MPa \\\tau_{x z} &=1.485 MPa +34.377 MPa =35.863 MPa\end{aligned}
Principal stress calculations for point H:
\begin{aligned}\sigma_{p 1, p 2} &=\frac{(162.975 MPa )+(0 MPa )}{2} \pm \sqrt{\left(\frac{(162.975 MPa )-(0 MPa )}{2}\right)^{2}+(-35.863 MPa )^{2}} \\&=81.487 MPa \pm 89.030 MPa\end{aligned}
therefore, \sigma_{p 1}=170.517 MPa and \sigma_{p 2}=-7.543 MPa
Consider point K.
Force F _{y} creates a transverse shear stress in the xy plane at K. The magnitude of this shear stress is:
\tau_{x y}=\frac{(400 N )\left(666.667 mm ^{3}\right)}{\left(7,853.982 mm ^{4}\right)(20 mm )}=1.698 MPa
Force F _{z} does not cause either a normal stress or a shear stress at K.
Moment M _{x}, which is a torque, creates a torsion shear stress in the xy plane at K. The magnitude of this shear stress is:
\tau_{x y}=\frac{M_{x} c}{J}=\frac{(54,000 N – mm )(20 mm / 2)}{15,707.963 mm ^{4}}=34.377 MPa
Moment M _{y} creates bending stress at K. The magnitude of this stress is:
\sigma_{x}=\frac{M_{y} z}{I_{y}}=\frac{(112,000 N – mm )(20 mm / 2)}{7,853.982 mm ^{4}}=142.603 MPa
Moment M _{z} does not create bending stress at K because K is located on the neutral axis for bending about the z axis.

Summary of stresses at K:
\begin{aligned}\sigma_{x} &=142.603 MPa \\\sigma_{y} &=0 MPa \\\tau_{x y} &=-1.698 MPa -34.377 MPa =-36.075 MPa\end{aligned}
Principal stress calculations for point K:
\begin{aligned}\sigma_{p 1, p 2} &=\frac{(142.603 MPa )+(0 MPa )}{2} \pm \sqrt{\left(\frac{(142.603 MPa )-(0 MPa )}{2}\right)^{2}+(-36.075 MPa )^{2}} \\&=71.301 MPa \pm 79.908 MPa\end{aligned}
therefore, \sigma_{p 1}=151.210 MPa and \sigma_{p 2}=-8.607 MPa
(a) Maximum-Shear-Stress Theory
Element H:
\left|\sigma_{p 1}-\sigma_{p 2}\right|=|170.517 MPa -(-7.543 MPa )|=178.060 MPa
The factor of safety associated with this state of stress is:
FS _{H}=\frac{350 MPa }{178.060 MPa }=1.966
Element K:
\left|\sigma_{p 1}-\sigma_{p 2}\right|=|151.210 MPa -(-8.607 MPa )|=159.816 MPa
The factor of safety associated with this state of stress is:
FS _{K}=\frac{350 MPa }{159.816 MPa }=2.19
(b) Mises equivalent stresses at points H and K:
Element H:
\begin{aligned}\sigma_{M, H} &=\left[\sigma_{p 1}^{2}-\sigma_{p 1} \sigma_{p 2}+\sigma_{p 2}^{2}\right]^{1 / 2} \\&=\left[(170.517 MPa )^{2}-(170.517 MPa )(-7.543 MPa )+(-7.543 MPa )^{2}\right]^{1 / 2} \\&=174.411 MPa =174.4 MPa\end{aligned}
Element K:
\begin{aligned}\sigma_{M, K} &=\left[\sigma_{p 1}^{2}-\sigma_{p 1} \sigma_{p 2}+\sigma_{p 2}^{2}\right]^{1 / 2} \\&=\left[(151.210 MPa )^{2}-(151.210 MPa )(-8.607 MPa )+(-8.607 MPa )^{2}\right]^{1 / 2} \\&=155.691 MPa =155.7 MPa\end{aligned}
(c) Maximum-Distortion-Energy Theory:
Element H:
FS _{H}=\frac{350 MPa }{174.411 MPa }=2.01
Element K:
FS _{K}=\frac{350 MPa }{155.691 MPa }=2.25