Question 15.78: A steel shaft with an outside diameter of 20 mm is supported...

A steel shaft with an outside diameter of 20 mm is supported in flexible bearings at its ends. Two pulleys are keyed to the shaft, and the pulleys carry belt tensions as shown in Figure P15.78. The yield strength of the steel is \sigma_{Y} = 350 MPa.
(a) Determine the factors of safety predicted at points H and K by the maximum-shear-stress theory of failure.
(b) Determine the Mises equivalent stresses at points H and K.
(c) Determine the factors of safety at points H and K predicted by the maximum-distortion-energy theory.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Section properties:

\begin{array}{ll}A=\frac{\pi}{4}(20  mm )^{2}=314.159  mm ^{2} & J=\frac{\pi}{32}(20  mm )^{4}=15,707.963  mm ^{4} \\Q=\frac{(20  mm )^{3}}{12}=666.667  mm ^{3} & I_{y}=I_{z}=\frac{\pi}{64}(20  mm )^{4}=7,853.982  mm ^{4}\end{array}

 

 

__________________________________________________________________________________________________

Equilibrium of entire shaft:

\begin{aligned}&\Sigma F_{y}=A_{y}+D_{y}+1,400  N +200  N =0 \\&\Sigma F_{z}=-A_{z}-D_{z}+1,100  N +300  N =0 \\&\Sigma M_{A, y \text { axis }}=-(1,100  N )(480  mm )-(300  N )(480  mm )+(640  mm ) D_{z}=0 \\&\Sigma M_{A, z \text { axis }}=(1,400  N )(160  mm )+(200  N )(160  mm )+(640  mm ) D_{y}=0\end{aligned}

therefore

D_{y}=-400  N , A_{y}=-1,200  N , D_{z}=1,050  N , \text { and } A_{z}=350  N

__________________________________________________________________________________________________

__________________________________________________________________________________________________

Detail of equivalent forces at H and K:                                        Detail of equivalent moments at H and K:

                                

\begin{aligned}F_{x} &=0  N \\F_{y} &=-400  N \\F_{z} &=1,100  N +300  N -1,050  N \\&=350  N\end{aligned}                                         \begin{gathered}M_{x}=(1,100  N )(135  mm / 2)-(300  N )(135  mm / 2) \\=54,000  N – mm \\M_{y}=(1,050  N )(320  mm )-(1,100  N )(160  mm ) \\\quad-(300  N )(160  mm )=112,000  N – mm \\M_{z}=-(400  N )(320  mm )=-128,000  N – mm\end{gathered}

__________________________________________________________________________________________________

Each of the non-zero forces and moments will be evaluated to determine whether stresses are created at the point of interest.

 

Consider point H.
Force F _{ y } does not cause either a normal stress or a shear stress at H.

Force F _{ z } creates a transverse shear stress in the xz plane at H. The magnitude of this shear stress is:

\tau_{x z}=\frac{(350  N )\left(666.667  mm ^{3}\right)}{\left(7,853.982  mm ^{4}\right)(20  mm )}=1.485  MPa

Moment M _{x}, which is a torque, creates a torsion shear stress in the xz plane at H. The magnitude of this shear stress is:

\tau_{x z}=\frac{M_{x} c}{J}=\frac{(54,000  N – mm )(20  mm / 2)}{15,707.963  mm ^{4}}=34.377  MPa

Moment M _{y} does not create bending stress at H because H is located on the neutral axis for bending about the y axis.

Moment M _{z} creates bending stress at H. The magnitude of this stress is:

\sigma_{x}=\frac{M_{z} y}{I_{z}}=\frac{(128,000  N – mm )(20  mm / 2)}{7,853.982  mm ^{4}}=162.975  MPa

 

Summary of stresses at H:

\begin{aligned}\sigma_{x} &=162.975  MPa \\\sigma_{z} &=0  MPa \\\tau_{x z} &=1.485  MPa +34.377  MPa =35.863  MPa\end{aligned}

Principal stress calculations for point H:

\begin{aligned}\sigma_{p 1, p 2} &=\frac{(162.975  MPa )+(0  MPa )}{2} \pm \sqrt{\left(\frac{(162.975  MPa )-(0  MPa )}{2}\right)^{2}+(-35.863  MPa )^{2}} \\&=81.487  MPa \pm 89.030  MPa\end{aligned}

therefore,            \sigma_{p 1}=170.517  MPa                   and                        \sigma_{p 2}=-7.543  MPa

 

 

Consider point K.
Force F _{y} creates a transverse shear stress in the xy plane at K. The magnitude of this shear stress is:

\tau_{x y}=\frac{(400  N )\left(666.667  mm ^{3}\right)}{\left(7,853.982  mm ^{4}\right)(20  mm )}=1.698  MPa

Force F _{z} does not cause either a normal stress or a shear stress at K.

Moment M _{x}, which is a torque, creates a torsion shear stress in the xy plane at K. The magnitude of this shear stress is:

\tau_{x y}=\frac{M_{x} c}{J}=\frac{(54,000  N – mm )(20  mm / 2)}{15,707.963  mm ^{4}}=34.377  MPa

Moment M _{y} creates bending stress at K. The magnitude of this stress is:

\sigma_{x}=\frac{M_{y} z}{I_{y}}=\frac{(112,000  N – mm )(20  mm / 2)}{7,853.982  mm ^{4}}=142.603  MPa

Moment M _{z} does not create bending stress at K because K is located on the neutral axis for bending about the z axis.

 

Summary of stresses at K:

\begin{aligned}\sigma_{x} &=142.603  MPa \\\sigma_{y} &=0  MPa \\\tau_{x y} &=-1.698  MPa -34.377  MPa =-36.075  MPa\end{aligned}

Principal stress calculations for point K:

\begin{aligned}\sigma_{p 1, p 2} &=\frac{(142.603  MPa )+(0  MPa )}{2} \pm \sqrt{\left(\frac{(142.603  MPa )-(0  MPa )}{2}\right)^{2}+(-36.075  MPa )^{2}} \\&=71.301  MPa \pm 79.908  MPa\end{aligned}

therefore,            \sigma_{p 1}=151.210  MPa                    and                         \sigma_{p 2}=-8.607  MPa

 

 

(a) Maximum-Shear-Stress Theory
Element H:

\left|\sigma_{p 1}-\sigma_{p 2}\right|=|170.517  MPa -(-7.543  MPa )|=178.060  MPa

The factor of safety associated with this state of stress is:

FS _{H}=\frac{350  MPa }{178.060  MPa }=1.966

Element K:

\left|\sigma_{p 1}-\sigma_{p 2}\right|=|151.210  MPa -(-8.607  MPa )|=159.816  MPa

The factor of safety associated with this state of stress is:

FS _{K}=\frac{350  MPa }{159.816  MPa }=2.19

 

(b) Mises equivalent stresses at points H and K:
Element H:

\begin{aligned}\sigma_{M, H} &=\left[\sigma_{p 1}^{2}-\sigma_{p 1} \sigma_{p 2}+\sigma_{p 2}^{2}\right]^{1 / 2} \\&=\left[(170.517  MPa )^{2}-(170.517  MPa )(-7.543  MPa )+(-7.543  MPa )^{2}\right]^{1 / 2} \\&=174.411  MPa =174.4  MPa\end{aligned}

Element K:

\begin{aligned}\sigma_{M, K} &=\left[\sigma_{p 1}^{2}-\sigma_{p 1} \sigma_{p 2}+\sigma_{p 2}^{2}\right]^{1 / 2} \\&=\left[(151.210  MPa )^{2}-(151.210  MPa )(-8.607  MPa )+(-8.607  MPa )^{2}\right]^{1 / 2} \\&=155.691  MPa =155.7  MPa\end{aligned}

 

(c) Maximum-Distortion-Energy Theory:
Element H:

FS _{H}=\frac{350  MPa }{174.411  MPa }=2.01

Element K:

FS _{K}=\frac{350  MPa }{155.691  MPa }=2.25

 

 

 

 

 

 

 

Related Answered Questions