Consequence |
A Priori Decision |
\overline{S}_{ut} = 87.6 kpsi, C_{Sut} = 0.0655 |
Use 1018 CD steel |
Function: |
C_{F}= 0.12, C_{kc}= 0.125 |
Carry axial load |
z =-3.891 |
R ≥ 0.999 95 |
C_{ka}= 0.058 |
Machined surfaces |
C_{Kf}= 0.10, C_{σ′_{a}}= (0.10^{2} 0.12^{2})^{1/2} = 0.156 |
Hole critical |
C_{kd}= 0 |
Ambient temperature |
C_{S′_{e}}=0.138 |
Correlation method |
C_{Se}= (0.058^{2} + 0.125^{2} + 0.138^{2})^{1/2} = 0.195 |
Hole drilled |
C_{n}=\sqrt{ \frac {C^{2}_{Se} +C^{2}_{σ′a}}{1 + C^{2}_{σ′a}} }=\sqrt {\frac {0.195^{2} + 0.156^{2}}{1 +0.156^{2}}}= 0.2467
\overline{n}= exp[ − (−3.891) \sqrt {ln(1 + 0.2467^{2})} +ln \sqrt {1 + 0.2467^{2}}]
=2.65 |
|
These eight a priori decisions have quantified the mean design factor as \overline{n} = 2.65. Proceeding deterministically hereafter we write
σ′_{a} =\frac {\overline{S}_{e}}{\overline{n}} = \overline{K}_{f} \frac {\overline{F}}{(w − d)t}
from which
t =\frac {\overline{K}_{f} \overline{n} \overline{F}}{(w − d) \overline{S}_{e}} (1)
To evaluate the preceding equation we need \overline{S}_{e} and \overline{K}_{f} . The Marin factors are
k_{a} = 2.67 \overline{S}^{−0.265}_{ut} LN(1, 0.058) = 2.67(87.6)^{−0.265} LN(1, 0.058)
\overline{K}_{a}= 0.816
k_{b} = 1
k_{c} = 1.23 \overline{S}^{−0.078}_{ut} LN(1, 0.125) = 0.868LN(1, 0.125)
\overline {k}_{c} = 0.868
\overline {k}_{d}= \overline {k}_{f} = 1
and the endurance strength is
\overline{S}_{e}= 0.816(1)(0.868)(1)(1)0.506(87.6) = 31.4 kpsi
The hole governs. From Table A–15–1 we find d/w = 0.50, therefore K_{t} = 2.18. From Table 6–15 \sqrt {a} = 5/ \overline{S}_{ut} = 5/87.6 = 0.0571, r = 0.1875 in. From Eq. (6–78) the fatigue stress concentration factor is
Table 6–15 Heywood’s Parameter \sqrt {a} and coefficients of variation C_{Kf} for steels
Coefficient of Variation C_{Kf} |
\sqrt{a}(\sqrt {mm}) ,S_{ut} in MPa |
\sqrt{a}(\sqrt {in}) ,S_{ut} in kpsi |
Notch Type |
0.10 |
174/S_{ut} |
5/S_{ut} |
Transverse hole |
0.11 |
139/S_{ut} |
4/S_{ut} |
Shoulder |
0.15 |
104/S_{ut} |
3/S_{ut} |
Groove |
\overline{K}_{f} =\frac {K_{t}}{1 + \frac {2(K_{t} − 1)}{K_{t}} \frac {\sqrt{a}}{\sqrt{r}}} (6–78)
\overline{K}_{f} =\frac {2.18}{1 + \frac {2(2.18 − 1)}{2.18} \frac {0.0571}{\sqrt{0.1875}}}
The thickness t can now be determined from Eq. (1)
t ≥\frac {\overline{K}_{f} \overline{n} \overline{F}}{(w − d)S_{e}}=\frac {1.91(2.65)1000}{(0.75 − 0.375)31 400} =0.430 in
Use \frac {1}{2} -in-thick strap for the workpiece. The 1\frac {1}{2} -in thickness attains and, in the rounding to available nominal size, exceeds the reliability goal.