Question 3.P.4: A system is initially in the state |ψ0〉 =[√2|Φ1〉 +√3|Φ2〉 ...

A system is initially in the state |\psi _{0}〉 = [\sqrt{2}|\phi _{1}〉+\sqrt{3}|\phi _{2}〉+|\phi _{3}〉+|\phi _{4}〉 ]/\sqrt{7}, where |\phi _{n}〉 are eigenstates of the system’s Hamiltonian such that \hat{H}|\phi _{n}〉=n^{2}\varepsilon _{0}|\phi _{n}〉.

(a) If energy is measured, what values will be obtained and with what probabilities?

(b) Consider an operator \hat{A} whose action on |\phi _{n}〉 is defined by \hat {A}|\phi _{n}〉=(n+1)a_{0}|\phi _{n}〉. If A is measured, what values will be obtained and with what probabilities?

(c) Suppose that a measurement of the energy yields 4\varepsilon _{0}. If we measure A immediately
afterwards, what value will be obtained?

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a) A measurement of the energy yields E_{n}= 〈\phi _{n}|\hat {H}|\phi _{n}〉=n^{2}\varepsilon _{0}, that is

E_{1}=\varepsilon _{0},    E_{2}=4\varepsilon _{0},    E_{3}=9\varepsilon _{0},    E_{4}=16\varepsilon _{0}       (3.167)

Since |\psi _{0}〉 is normalized, 〈\psi _{0}|\psi _{0}〉= (2+3+1+1)/7=1, and using (3.2),

P_{n}(a_{n} )=\frac{\left|〈\psi _{n}|\psi〉\right| ^{2} }{〈\psi|\psi〉} =\frac{\left|a_{n}\right| ^{2}}{〈\psi|\psi〉} ,

we can write the probabilities corresponding to (3.167) as P (E_{n})= \left|〈\phi _{n}|\psi _{0}〉\right| ^{2}/〈\psi _{0}|\psi _{0}〉=\left|〈\phi _{n}|\psi _{0}〉\right| ^{2}; hence,

using the fact that 〈\phi _{n}|\phi _{m}〉=\delta _{nm}, we have

P(E_{1})= \left|\sqrt{\frac{2}{7}}〈\phi _{1}|\phi _{1}〉 \right| ^{2}=\frac{2}{7},      P(E_{2})= \left|\sqrt{\frac{3}{7}}〈\phi _{2}|\phi _{2}〉 \right| ^{2}=\frac{3}{7},              (3.168)

 

P(E_{3})= \left|\frac{1}{\sqrt{7} } 〈\phi _{3}|\phi _{3}〉 \right| ^{2}=\frac{1}{7},      P(E_{4})= \left|\frac{1}{\sqrt{7} } 〈\phi _{4}|\phi _{4}〉 \right| ^{2}=\frac{1}{7}.                  (3.169)

(b) Similarly, a measurement of the observable \hat{A} yields a_{n}= 〈\phi _{n}|\hat{A}|\phi _{n}〉=(n+1)a_{0} ; that is,

a_{1}=2a_{0},    a_{2}=3a_{0},    a_{3}=4a_{0},    a_{4}=5a_{0}.              (3.170)

Again, using (3.2) and since |\psi _{0}〉 is normalized, we can ascertain that the probabilities corresponding to the values (3.170) are given by P(a_{n})= \left|〈\phi _{n}|\psi _{0}〉\right| ^{2}/〈\psi _{0}|\psi _{0}〉=\left|〈\phi _{n}|\psi _{0}〉\right| ^{2} , or

P(a_{1})= \left|\sqrt{\frac{2}{7}}〈\phi _{1}|\phi _{1}〉 \right| ^{2}=\frac{2}{7},      P(a_{2})= \left|\sqrt{\frac{3}{7}}〈\phi _{2}|\phi _{2}〉 \right| ^{2}=\frac{3}{7},                 (3.171)

 

P(a_{3})= \left|\frac{1}{\sqrt{7} } 〈\phi _{3}|\phi _{3}〉 \right| ^{2}=\frac{1}{7},      P(a_{4})= \left|\frac{1}{\sqrt{7} } 〈\phi _{4}|\phi _{4}〉 \right| ^{2}=\frac{1}{7}.                  (3.172)

(c) An energy measurement that yields 4\varepsilon _{0} implies that the system is left in the state |\psi _{2}〉.

A measurement of the observable A immediately afterwards leads to

〈\phi _{2}|\hat{A}|\phi _{2}〉=3a_{0}〈\phi _{2}|\phi _{2}〉=3a_{0}.                       (3.173)

Related Answered Questions