Question 3.16: (a) The differential equation d^2 y/dt^2 + 6dy/dt + 9y = cos...

(a)  The differential equation

 

\frac{d^{2} y}{d t^{2}}+6 \frac{d y}{d t}+9 y=\cos t

 

has initial conditions, y(0)=1, y^{\prime}(0)=2. Find Y(s) and, without finding y(t), determine what functions of time will appear in the solution.

 

(b)  If Y(s)=\frac{s+1}{s\left(s^{2}+4 s+8\right)}, find y(t).

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

a)  Take the Laplace transform:

 

\left[s^{2} Y(s)-s y(0)-y^{\prime}(0)\right]+6[s Y(s)-y(0)]+9 Y(s)=\frac{s}{s^{2}+1}

 

\left(s^{2}+6 s+9\right) Y( s )- s (1)-2-(6)(1)=\frac{s}{s^{2}+1}

 

\left(s^{2}+6 s+9\right) Y(s)=\frac{s}{s^{2}+1}+s+8

 

\left(s^{2}+6 s+9\right) Y( s )=\frac{s+s^{3}+s+8 s^{2}+8}{s^{2}+1}

 

Y( s )=\frac{s^{3}+8 s^{2}+2 s+8}{(s+3)^{2}\left(s^{2}+1\right)}

 

To find y(t) we have to expand Y(s) into its partial fractions

 

Y(s)=\frac{A}{(s+3)^{2}}+\frac{B}{s+3}+\frac{C s}{s^{2}+1}+\frac{D}{s^{2}+1}

 

y(t)=A t e ^{-3 t}+B e ^{-3 t}+C \cos t+D \sin t

 

b)  Y(s)=\frac{s+1}{s\left(s^{2}+4 s+8\right)}

 

Since \frac{4^{2}}{4}<8, there are complex factors.

 

\therefore complete the square in denominator

 

s^{2}+4 s+8=s^{2}+4 s+4+8-4

 

=s^{2}+4 s+4+4=(s+2)^{2}+(2)^{2} \quad\{b=2, \omega=2\}

 

\therefore Partial fraction expansion gives

 

Y(s)=\frac{A}{s}+\frac{B(s+2)}{s^{2}+4 s+8}+\frac{C}{s^{2}+4 s+8}=\frac{s+1}{s\left(s^{2}+4 s+8\right)}

 

Multiply by s and let s \rightarrow 0

 

A=1 / 8

 

Multiply by s\left(s^{2}+4 s+8\right)

 

A\left(s^{2}+4 s+8\right)+B(s+2) s+C s=s+1

 

A s^{2}+4 A s+8 A+B s ^{2}+2 B s +C s=s+1

 

s^{2}: \quad A+B=0 \quad \rightarrow \quad B=-A=-\frac{1}{8}

 

s^{1}: \quad 4 A+2 B+C=1 \rightarrow C=1+2\left(\frac{1}{8}\right)-4\left(\frac{1}{8}\right)=\frac{3}{4}

 

s^{0}: \quad 8 A=1 \quad \rightarrow A=\frac{1}{8}  (This checks with above result)

 

Y(s)=\frac{1 / 8}{s}+\frac{(-1 / 8)(s+2)}{(s+2)^{2}+2^{2}}+\frac{3 / 4}{(s+2)^{2}+2^{2}}

 

y(t)=\left(\frac{1}{8}\right)-\left(\frac{1}{8}\right) e ^{-2 t} \cos 2 t+\left(\frac{3}{8}\right) e ^{-2 t} \sin 2 t

Related Answered Questions