Question 4.11: (a) The resistivities of the P-region and N-region of a germ...

(a) The resistivities of the P-region and N-region of a germanium diode are 6 Ω-cm and 4Ω-cm, respectively. Calculate the contact potential V_{o} and potential energy barrier E_{o}. (b) If the doping densities of both P and N-regions are doubled, determine V_{o}  and  E_{o}. Given that q = 1.602 × 10^{–19}  C,  n_{i} = 2.5 × 10^{13}/cm^{3},  \mu_{p} = 1800  cm^{2}/V-s,  \mu_{n} = 3800  cm^{2} /V-s  and  V_{T} = 0.026  V  at  300  K.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a) Resistivity,                     \rho =\frac{1}{\sigma }=\frac{1}{N_{A} q\mu _{p} }6\Omega -cm

Therefore,                            N_{A}=\frac{1}{6q\mu _{p}}=\frac{1}{6\times 1.602\times 10^{-19}\times 1800 }=0.579\times 10^{15}/cm^{3}

Similarly,                              N_{D}=\frac{1}{4q\mu _{n}}=\frac{1}{4\times 1.602\times 10^{-19}\times 3800 }=0.579\times 10^{15}/cm^{3}

Therefore,                             V_{0}=V_{T} \ln\frac{N_{D}N_{A}}{n^{2}_{i} } =0.026\ln \frac{0.579\times 0.411\times 10^{30} }{(2.5\times 10^{13} )^{2} } =0.1545 V

Hence                                     E_{0} = 0.1545  eV

(b)                                            V_{0}=0.026\frac{2\times 0.579\times 10^{15}\times 2\times 0.411\times 10^{15} }{(2.5\times 10^{13} )^{2} }=0.1906V

Therefore,                               E_{0} = 0.1906  eV

Related Answered Questions