Question 3.14: A thermoelectric unit is made of bismuth telluride p-n pairs...

A thermoelectric unit is made of bismuth telluride p-n pairs. Each pair is made of p- and n-type elements having a square cross section with each side a = 1 mm and each element having a length L = 1.5 mm. The elements are placed between two ceramic plates as shown in Figure Each side of the ceramic plates is a_{c} = 30 mm which allows for 14 elements along each side. This results in N = 7 × 14 pairs over the cross section a_{c} ×a_{c}.
(a) Determine the maximum cooling power Q_{c,max} for T_{h} − T_{c} = 0.
(b) Determine the maximum cooling power Q_{c,max} for T_{h} − T_{c} = 50^{\circ }C.
(c) Determine the corresponding current J_{e}(Q_{c,max}).
The cold plate is at T_{c} = 290 K.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

The maximum cooling power is given by Q_{c,max}=-\frac{\alpha ^{2}_{S}T_{c}^{2}}{2R_{e,h-c}}+R^{-1}_{k,h-c}(T_{h}-T_{c}) and for N pairs we have

\mid Q_{c} \mid  _{max} =N\left[ \frac{\alpha ^{2}_{S}T_{c}^{2}}{2R_{e,h-c}}+R^{-1}_{k,h-c}(T_{h}-T_{c}) \right] 

We need to determine \alpha _{S}, R_{e,h-c}, and R_{k,h-c}. From (\dot{S}_{e,p})_{c}=-\alpha _{S}J_{e}T_{c} ,        \alpha _{S}=\alpha _{S,p}-\alpha _{S,n} for \alpha _{S} we have

\alpha _{S}=\alpha _{s,p}-\alpha _{S,n}

For R_{e,h-c}, from \frac{1}{R_{k,h-c}}=\frac{1}{(R_{k,h-c})_{p}}+\frac{1}{(R_{k,h-c})_{n}}=\left(\frac{A_{k}k}{L} \right)_{p} +\left(\frac{A_{k}k}{L} \right)_{n},        R_{e,h-c}=\left(\frac{\rho _{e}L}{A_{k}} \right)_{p}+\left(\frac{\rho _{e}L}{A_{k}} \right) _{n} we have, based on the variables defined above

R_{e,h-c}=\left(\frac{\rho _{e}L}{A} \right)_{p}+\left(\frac{\rho _{e}L}{A} \right) _{n} =\frac{\rho _{e,p}L}{a^{2}}+\frac{\rho _{e,n}L}{a^{2}}

For R_{k,h-c}, from \frac{1}{R_{k,h-c}}=\frac{1}{(R_{k,h-c})_{p}}+\frac{1}{(R_{k,h-c})_{n}}=\left(\frac{A_{k}k}{L} \right)_{p} +\left(\frac{A_{k}k}{L} \right)_{n},        R_{e,h-c}=\left(\frac{\rho _{e}L}{A_{k}} \right)_{p}+\left(\frac{\rho _{e}L}{A_{k}} \right) _{n} we have

R_{k,h-c}^{2}=\left(k\frac{A}{L} \right)_{p}+\left(k\frac{A}{L} \right) _{n} =\frac{k_{p}a^{2}}{L} +\frac{k_{n}a^{2}}{L}

Now using the numerical values, we have

\alpha _{s}=2.3\times 10^{-4}(V/^{\circ }C)+2.1\times 10^{-4}(V/K)=4.4\times 10^{-4}V/^{\circ }C     or   V/K      Table

   R_{e,h-c}=2\times \frac{1.0\times 10^{-5}(ohm-m)\times 1.5\times 10^{-3}(m)}{10^{-3}(m)\times 10^{-3}(m)}=0.030 ohm          Table

R_{k,h-c}^{-1}=\frac{1.7(W/m-K)\times 10^{-3}(m)\times 10^{-3}(m)}{1.5\times 10^{-3}(m)}+\frac{1.45(W/m-K)\times 10^{-3}(m)\times 10^{-3}(m)}{1.5\times 10^{-3}(m)}=2.100\times 10^{-3 }W/K       Table

Substituting these numerical values in the above expressions for   \mid Q_{c,max}\mid  , we have the following.
(a) The maximum heat flow rate, for   T_{h} − T_{c} = 0 K  , is

\mid Q_{c} \mid  _{max}=98\left[\frac{(4.4\times 10^{-4})^{2}(V/K)^{2}\times (290)^{2}(k)^{2}}{2\times 0.030 (ohm)}-2.100\times 10^{-3}(W/K)\times (0)(k) \right]=26.60 W          for          T_{h} − T_{c}

(b) The maximum heat flow rate, for       T_{h} − T_{c}=50  K , is

\mid Q_{c}\mid  _{max} =98\left[\frac{(4.4\times 10^{-4})^{2}(V/K)^{2}\times (290)^{2}(k)^{2}}{2\times 0.030 (ohm)}-2.100\times 10^{-3}(W/K)\times (50)(k) \right]=16.30 W

(c) The current corresponding to the maximum cooling power is given by ,i.e.,

J_{e}(Q_{c,max})=\frac{\alpha _{S}T_{c}}{R_{e,h-c}}

Using the numerical values, we have

J_{e}(Q_{c,max})=\frac{4.4\times 10^{-4}(V/K)\times (290)(K)}{0.03{ohm}}=4.253 A  

 

9

Related Answered Questions