A thin-walled closed section beam has the singly symmetrical cross-section shown in Fig. 16.18. Each wall of the section is flat and has the same thickness t and shear modulus G. Calculate the distance of the shear center from point 4.
A thin-walled closed section beam has the singly symmetrical cross-section shown in Fig. 16.18. Each wall of the section is flat and has the same thickness t and shear modulus G. Calculate the distance of the shear center from point 4.
The shear center clearly lies on the horizontal axis of symmetry, so that it is necessary only to apply a shear load S_{y} through S and to determine \xi_{S}. If we take the x reference axis to coincide with the axis of symmetry, then I_{x y}=0, and since S_{x}=0, Eq. (16.15) simplifies to
q_{s}=-\left(\frac{S_{x} I_{x x}-S_{y} I_{x y}}{I_{x x} I_{y y}-I_{x y}^{2}}\right) \int_{0}^{s} t x d s-\left(\frac{S_{y} I_{y y}-S_{x} I_{x y}}{I_{x x} I_{y y}-I_{x y}^{2}}\right) \int_{0}^{s} t y d s+q_{s, 0} (16.15)
q_{s}=-\frac{S_{y}}{I_{x x}} \int_{0}^{s} t y d s+q_{s, 0} (i)
in which
I_{x x}=2\left[\int_{0}^{10 a} t\left(\frac{8}{10} s_{1}\right)^{2} d s_{1}+\int_{0}^{17 a} t\left(\frac{8}{17} s_{2}\right)^{2} d s_{2}\right]
Evaluating this expression gives I_{x x}=1,152 a^{3} t.
The basic shear flow distribution q_{ b } is obtained from the first term in Eq. (i). Then, for the wall 41,
q_{ b , 41}=\frac{-S_{y}}{1,152 a^{3} t} \int_{0}^{s_{1}} t\left(\frac{8}{10} s_{1}\right) d s_{1}=\frac{-S_{y}}{1,152 a^{3}}\left(\frac{2}{5} s_{1}^{2}\right) (ii)
In the wall 12,
q_{ b , 12}=\frac{-S_{y}}{1,152 a^{3}}\left[\int_{0}^{s_{2}}\left(17 a-s_{2}\right) \frac{8}{17} d s_{2}+40 a^{2}\right] (iii)
which gives
q_{ b , 12}=\frac{-S_{y}}{1,152 a^{3}}\left(-\frac{4}{17} s_{2}^{2}+8 a s_{2}+40 a^{2}\right) (iv)
The q_{ b } distributions on the walls 23 and 34 follow from symmetry. Hence, from Eq. (16.28),
q_{s, 0}=-\frac{\oint q_{ b } d s}{\oint d s} (16.28)
q_{s, 0}=\frac{2 S_{y}}{54 a \times 1,152 a^{3}}\left[\int_{0}^{10 a} \frac{2}{5} s_{1}^{2} d s_{1}+\int_{0}^{17 a}\left(-\frac{4}{17} s_{2}^{2}+8 a s_{2}+40 a^{2}\right) d s_{2}\right]
giving
q_{s, 0}=\frac{S_{y}}{1,152 a^{3}}\left(58.7 a^{2}\right) (v)
Taking moments about the point 2, we have
S_{y}\left(\xi_{ S }+9 a\right)=2 \int_{0}^{10 a} q_{41} 17 a \sin \theta d s_{1}
or
S_{y}\left(\xi_{ S }+9 a\right)=\frac{S_{y} 34 a \sin \theta}{1,152 a^{3}} \int_{0}^{10 a}\left(-\frac{2}{5} s_{1}^{2}+58.7 a^{2}\right) d s_{1} (vi)
We may replace \sin \theta by \sin \left(\theta_{1}-\theta_{2}\right)=\sin \theta_{1} \cos \theta_{2}-\cos \theta_{1} \sin \theta_{2}, where \sin \theta_{1}=15 / 17, \cos \theta_{2}=8 / 10, \cos \theta_{1}=8 / 17, and \sin \theta_{2}=6 / 10. Substituting these values and integrating Eq. (vi) gives
\xi_{ s }=-3.35 a
which means that the shear center is inside the beam section.