Question 16.7: A thin-walled closed section beam has the singly symmetrical...

A thin-walled closed section beam has the singly symmetrical cross-section shown in Fig. 16.18. Each wall of the section is flat and has the same thickness t and shear modulus G. Calculate the distance of the shear center from point 4.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

The shear center clearly lies on the horizontal axis of symmetry, so that it is necessary only to apply a shear load S_{y} through S and to determine \xi_{S}. If we take the x reference axis to coincide with the axis of symmetry, then I_{x y}=0, and since S_{x}=0, Eq. (16.15) simplifies to

 

q_{s}=-\left(\frac{S_{x} I_{x x}-S_{y} I_{x y}}{I_{x x} I_{y y}-I_{x y}^{2}}\right) \int_{0}^{s} t x d s-\left(\frac{S_{y} I_{y y}-S_{x} I_{x y}}{I_{x x} I_{y y}-I_{x y}^{2}}\right) \int_{0}^{s} t y d s+q_{s, 0}  (16.15)

 

q_{s}=-\frac{S_{y}}{I_{x x}} \int_{0}^{s} t y d s+q_{s, 0}  (i)

 

in which

 

I_{x x}=2\left[\int_{0}^{10 a} t\left(\frac{8}{10} s_{1}\right)^{2} d s_{1}+\int_{0}^{17 a} t\left(\frac{8}{17} s_{2}\right)^{2} d s_{2}\right]

 

Evaluating this expression gives I_{x x}=1,152 a^{3} t.

 

The basic shear flow distribution q_{ b } is obtained from the first term in Eq. (i). Then, for the wall 41,

 

q_{ b , 41}=\frac{-S_{y}}{1,152 a^{3} t} \int_{0}^{s_{1}} t\left(\frac{8}{10} s_{1}\right) d s_{1}=\frac{-S_{y}}{1,152 a^{3}}\left(\frac{2}{5} s_{1}^{2}\right)  (ii)

 

In the wall 12,

 

q_{ b , 12}=\frac{-S_{y}}{1,152 a^{3}}\left[\int_{0}^{s_{2}}\left(17 a-s_{2}\right) \frac{8}{17} d s_{2}+40 a^{2}\right]  (iii)

 

which gives

 

q_{ b , 12}=\frac{-S_{y}}{1,152 a^{3}}\left(-\frac{4}{17} s_{2}^{2}+8 a s_{2}+40 a^{2}\right)  (iv)

 

The q_{ b } distributions on the walls 23 and 34 follow from symmetry. Hence, from Eq. (16.28),

 

q_{s, 0}=-\frac{\oint q_{ b } d s}{\oint d s}  (16.28)

 

q_{s, 0}=\frac{2 S_{y}}{54 a \times 1,152 a^{3}}\left[\int_{0}^{10 a} \frac{2}{5} s_{1}^{2} d s_{1}+\int_{0}^{17 a}\left(-\frac{4}{17} s_{2}^{2}+8 a s_{2}+40 a^{2}\right) d s_{2}\right]

 

giving

 

q_{s, 0}=\frac{S_{y}}{1,152 a^{3}}\left(58.7 a^{2}\right)  (v)

 

Taking moments about the point 2, we have

 

S_{y}\left(\xi_{ S }+9 a\right)=2 \int_{0}^{10 a} q_{41} 17 a \sin \theta d s_{1}

 

or

 

S_{y}\left(\xi_{ S }+9 a\right)=\frac{S_{y} 34 a \sin \theta}{1,152 a^{3}} \int_{0}^{10 a}\left(-\frac{2}{5} s_{1}^{2}+58.7 a^{2}\right) d s_{1}  (vi)

 

We may replace \sin \theta by \sin \left(\theta_{1}-\theta_{2}\right)=\sin \theta_{1} \cos \theta_{2}-\cos \theta_{1} \sin \theta_{2}, where \sin \theta_{1}=15 / 17, \cos \theta_{2}=8 / 10, \cos \theta_{1}=8 / 17, and \sin \theta_{2}=6 / 10. Substituting these values and integrating Eq. (vi) gives

 

\xi_{ s }=-3.35 a

 

which means that the shear center is inside the beam section.

Related Answered Questions