Question 6.24: A three-phase, star-connected, 10 kVA , 400 V 50 Hz alternat...

A three-phase, star-connected, 10 kVA , 400 V 50 Hz alternator has armature resistance of 0.5 ohm / phase and synchronous reactance 10 ohm/phase. Determine its torque angle and voltage regulation when it supplies rated load at 0.8 pf lagging.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.
\text { Here, } \quad \text { Rated power }=10 kVA ; R=0.5 \Omega ; X_{5}=10 \Omega ; \cos \phi=0.8 \text { lagging }

 

\text { Rated load current, } I_{L}=\frac{10 \times 10^{3}}{\sqrt{3} \times 400}=14.4 A

 

\text { Rated phase current, } I=I_{L}=14.4 A

 

\bar{Z}_{S}=R+j X_{S}=0.5+j 10=10.012 \angle 87^{\circ} \Omega

 

\text { Rated phase voltage, } V=\frac{V_{L}}{\sqrt{3}}=\frac{400}{\sqrt{3}}=230.9 V

 

Taking phase voltage V as reference phasor,

 

  \therefore   \bar{V}=V \angle 0^{\circ}=230.9 \angle 0^{\circ}=(230.9 \pm j 0) V

 

At 0.8 lagging power factor

 

  \text { Current, } \bar{I} =I \angle-\cos ^{-1} 0.8=14.4 \angle-36.87^{\prime \prime} A

 

  E_{0} =\bar{V}+\bar{I} \overline{Z_{s}}

 

  \left.=230.9+j 0+\left(14.4 \angle-36.87^{\circ}\right)(10.012) \angle 87^{\circ}\right)

 

  =230.9+144.2 \angle 50.13^{\circ}=230.9+92.4+j 110.6

 

  =323.3+j 110.6=341.7 \angle 18.9^{\circ} V

 

  \therefore  E_{0} =341.7 V

 

Torque angle between V  and   E_{0}   is   \delta=18.9^{\circ}   (leading)

 

  \text { Voltage regulation }=\frac{E_{0}-V}{V}=\frac{341.7-230.9}{230.9}=0.4798 \text { pu }

Related Answered Questions