A three-phase, star-connected, 10 kVA , 400 V 50 Hz alternator has armature resistance of 0.5 ohm / phase and synchronous reactance 10 ohm/phase. Determine its torque angle and voltage regulation when it supplies rated load at 0.8 pf lagging.
A three-phase, star-connected, 10 kVA , 400 V 50 Hz alternator has armature resistance of 0.5 ohm / phase and synchronous reactance 10 ohm/phase. Determine its torque angle and voltage regulation when it supplies rated load at 0.8 pf lagging.
\text { Rated load current, } I_{L}=\frac{10 \times 10^{3}}{\sqrt{3} \times 400}=14.4 A
\text { Rated phase current, } I=I_{L}=14.4 A
\bar{Z}_{S}=R+j X_{S}=0.5+j 10=10.012 \angle 87^{\circ} \Omega
\text { Rated phase voltage, } V=\frac{V_{L}}{\sqrt{3}}=\frac{400}{\sqrt{3}}=230.9 V
Taking phase voltage V as reference phasor,
\therefore \bar{V}=V \angle 0^{\circ}=230.9 \angle 0^{\circ}=(230.9 \pm j 0) V
At 0.8 lagging power factor
\text { Current, } \bar{I} =I \angle-\cos ^{-1} 0.8=14.4 \angle-36.87^{\prime \prime} A
E_{0} =\bar{V}+\bar{I} \overline{Z_{s}}
\left.=230.9+j 0+\left(14.4 \angle-36.87^{\circ}\right)(10.012) \angle 87^{\circ}\right)
=230.9+144.2 \angle 50.13^{\circ}=230.9+92.4+j 110.6
=323.3+j 110.6=341.7 \angle 18.9^{\circ} V
\therefore E_{0} =341.7 V
Torque angle between V and E_{0} is \delta=18.9^{\circ} (leading)
\text { Voltage regulation }=\frac{E_{0}-V}{V}=\frac{341.7-230.9}{230.9}=0.4798 \text { pu }