Question 6.100: A torque of magnitude T = 1.5 kip-in. is applied to each of ...

A torque of magnitude T = 1.5 kip-in. is applied to each of the bars shown in Figure P6.100/101. If the allowable shear stress is specified as τallow =8\tau_{\text {allow }}=8 ksi, determine the minimum required dimension b for each bar.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a) Circular Section
Rearrange the elastic torsion formula to group terms with d on the left-hand side:

π32d4(d/2)=Tτ\frac{\pi}{32} \frac{d^{4}}{(d / 2)}=\frac{T}{\tau}  which can be simplified to  πd316=Tτ\frac{\pi d^{3}}{16}=\frac{T}{\tau}

From this equation, the unknown diameter of the solid shaft can be expressed as

d=16Tπτ3d=\sqrt[3]{\frac{16 T}{\pi \tau}}

To support a torque of T = 1.5 kip-in. without exceeding the maximum shear stress of 8 ksi, the solid shaft must have a diameter (i.e., dimension b shown in the problem statement) of

bmin16Tπτ3=16(1.5 kipin.)π(8 ksi)3=0.985 in.b_{\min } \geq \sqrt[3]{\frac{16 T}{\pi \tau}}=\sqrt[3]{\frac{16(1.5  kip – in .)}{\pi(8  ksi )}}=0.985  in.

(b) Square Section
From Table 6.1,

a=b   aspect ratio  ba=1  α=0.208a=b   \quad \text { aspect ratio }  \frac{b}{a}=1    \quad \Rightarrow \quad \alpha=0.208

The maximum shear stress in a rectangular section is given by Eq. (6.22):

τmax=Tαa2b\tau_{\max }=\frac{T}{\alpha a^{2} b}

For a square section where a = b,

b3=Tατmax=1.5 kipin.(0.208)(8 ksi)=0.901442 in.3  bmin=0.966 in.b^{3}=\frac{T}{\alpha \tau_{\max }}=\frac{1.5  kip – in .}{(0.208)(8  ksi )}=0.901442  in .{ }^{3}    \quad \therefore b_{\min }=0.966  in .

(c) Rectangular Section
From Table 6.1,

 aspect ratio 2bb=2α=0.246\text { aspect ratio } \frac{2 b}{b}=2 \quad \Rightarrow \quad \alpha=0.246

For a rectangular section where a = 2b,

b3=T2ατmax=1.5 kipin.2(0.246)(8 ksi)=0.381098 in.3  bmin=0.725 in.b^{3}=\frac{T}{2 \alpha \tau_{\max }}=\frac{1.5  kip – in .}{2(0.246)(8  ksi )}=0.381098  in .{ }^{3}    \quad \therefore b_{\min }=0.725  in .

 

 

Table 6.1 Table of Constants for Torsion
of a Rectangular Bar
Ratio b/a α β
1.0 0.208 0.1406
1.2 0.219 0.166
1.5 0.231 0.196
2.0 0.246 0.229
2.5 0.258 0.249
3.0 0.267 0.263
4.0 0.282 0.281
5.0 0.291 0.291
10.0 0.312 0.312
0.333 0.333

Related Answered Questions