\text { Given }\left(M_{t}\right)_{\max }=200 N – m .
\left(M_{t}\right)_{\min }=70 N – m \quad\left(M_{b}\right)_{\max }=600 N – m .
\left(M_{b}\right)_{\min .}=200 N – m \quad S_{u t}=540 N / mm ^{2} .
S_{y t}=400 N / mm ^{2} \quad S_{e}=200 N / mm ^{2}(f s)=2 .
Step I Mean and amplitude stresses
\left(M_{b}\right)_{m}=\frac{1}{2}\left[\left(M_{b}\right)_{\max }+\left(M_{b}\right)_{\min }\right] .
=\frac{1}{2}[600+200]=400 N – m .
\left(M_{b}\right)_{a}=\frac{1}{2}\left[\left(M_{b}\right)_{\max .}-\left(M_{b}\right)_{\min .}\right] .
=\frac{1}{2}[600-200]=200 N – m .
\left(M_{t}\right)_{m}=\frac{1}{2}\left[\left(M_{t}\right)_{\max }+\left(M_{t}\right)_{\min }\right] .
=\frac{1}{2}[200+70]=135 N – m .
\left(M_{t}\right)_{a}=\frac{1}{2}\left[\left(M_{t}\right)_{\max }-\left(M_{t}\right)_{\min }\right] .
=\frac{1}{2}[200-70]=65 N – m .
\sigma_{x m}=\frac{32\left(M_{b}\right)_{m}}{\pi d^{3}}=\frac{32\left(400 \times 10^{3}\right)}{\pi d^{3}} .
=\left(\frac{4074.37 \times 10^{3}}{d^{3}}\right) N / mm ^{2} .
\sigma_{x a}=\frac{32\left(M_{b}\right)_{a}}{\pi d^{3}}=\frac{32\left(200 \times 10^{3}\right)}{\pi d^{3}} .
\tau_{x y m}=\frac{16\left(M_{t}\right)_{m}}{\pi d^{3}}=\frac{16\left(135 \times 10^{3}\right)}{\pi d^{3}} .
=\left(\frac{687.55 \times 10^{3}}{d^{3}}\right) N / mm ^{2} .
\tau_{x y a}=\frac{16\left(M_{t}\right)_{a}}{\pi d^{3}}=\frac{16\left(65 \times 10^{3}\right)}{\pi d^{3}} .
=\left(\frac{331.04 \times 10^{3}}{d^{3}}\right) N / mm ^{2} .
\sigma_{m}=\sqrt{\sigma_{x m}^{2}+3 \tau_{x y m}^{2}} .
=\sqrt{\left(\frac{4074.37 \times 10^{3}}{d^{3}}\right)^{2}+3\left(\frac{687.55 \times 10^{3}}{d^{3}}\right)^{2}} .
=\left(\frac{4244.84 \times 10^{3}}{d^{3}}\right) N / mm ^{2} .
\sigma_{a}=\sqrt{\sigma_{x a}^{2}+3 \tau_{x y a}^{2}} .
=\sqrt{\left(\frac{2037.18 \times 10^{3}}{d^{3}}\right)^{2}+3\left(\frac{331.04 \times 10^{3}}{d^{3}}\right)^{2}} .
=\left(\frac{2116.33 \times 10^{3}}{d^{3}}\right) N / mm ^{2} .
Step II Construction of modified Goodman diagram
\tan \theta=\frac{\sigma_{a}}{\sigma_{m}}=\frac{2116.33}{4244.84}=0.4986 \text { or } \theta=26.5^{\circ} .
The modified Goodman diagram for this example is shown in Fig. 5.56.
Step III Permissible stress amplitude
Refer to Fig. 5.56. The co-ordinates of the point X are obtained by solving the following two equations simultaneously:
\frac{S_{a}}{200}+\frac{S_{m}}{540}=1 (a).
\frac{S_{a}}{S_{m}}=\tan \theta=0.4986 (b).
∴ S_{a}=114.76 N / mm ^{2} .
S_{m}=230.16 N / mm ^{2} .
Step IV Diameter of shaft
\text { Since } \sigma_{a}=\frac{S_{a}}{(f s)} \quad \therefore \quad \frac{2116.33 \times 10^{3}}{d^{3}}=\frac{114.76}{2} .
d = 33.29 mm.