Question 5.20: A transmission shaft carries a pulley midway between the two...

A transmission shaft carries a pulley midway between the two bearings. The bending moment at the pulley varies from 200 N-m to 600 N-m, as the torsional moment in the shaft varies from 70 N-m to 200 N-m. The frequencies of variation of bending and torsional moments are equal to the shaft speed. The shaft is made of steel FeE 400 \left(S_{u t}=540 N / mm ^{2} \text { and } S_{y t}=\right. 400 N / mm ^{2} \text { ). } . The corrected endurance limit of the shaft is 200 N/mm2. Determine the diameter of the shaft using a factor of safety of 2.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

\text { Given }\left(M_{t}\right)_{\max }=200 N – m .

\left(M_{t}\right)_{\min }=70 N – m \quad\left(M_{b}\right)_{\max }=600 N – m .

\left(M_{b}\right)_{\min .}=200 N – m \quad S_{u t}=540 N / mm ^{2} .

S_{y t}=400 N / mm ^{2} \quad S_{e}=200 N / mm ^{2}(f s)=2 .

Step I Mean and amplitude stresses

\left(M_{b}\right)_{m}=\frac{1}{2}\left[\left(M_{b}\right)_{\max }+\left(M_{b}\right)_{\min }\right] .

=\frac{1}{2}[600+200]=400 N – m .

\left(M_{b}\right)_{a}=\frac{1}{2}\left[\left(M_{b}\right)_{\max .}-\left(M_{b}\right)_{\min .}\right] .

=\frac{1}{2}[600-200]=200 N – m .

\left(M_{t}\right)_{m}=\frac{1}{2}\left[\left(M_{t}\right)_{\max }+\left(M_{t}\right)_{\min }\right] .

=\frac{1}{2}[200+70]=135 N – m .

\left(M_{t}\right)_{a}=\frac{1}{2}\left[\left(M_{t}\right)_{\max }-\left(M_{t}\right)_{\min }\right] .

=\frac{1}{2}[200-70]=65 N – m .

\sigma_{x m}=\frac{32\left(M_{b}\right)_{m}}{\pi d^{3}}=\frac{32\left(400 \times 10^{3}\right)}{\pi d^{3}} .

=\left(\frac{4074.37 \times 10^{3}}{d^{3}}\right) N / mm ^{2} .

\sigma_{x a}=\frac{32\left(M_{b}\right)_{a}}{\pi d^{3}}=\frac{32\left(200 \times 10^{3}\right)}{\pi d^{3}} .

\tau_{x y m}=\frac{16\left(M_{t}\right)_{m}}{\pi d^{3}}=\frac{16\left(135 \times 10^{3}\right)}{\pi d^{3}} .

=\left(\frac{687.55 \times 10^{3}}{d^{3}}\right) N / mm ^{2} .

\tau_{x y a}=\frac{16\left(M_{t}\right)_{a}}{\pi d^{3}}=\frac{16\left(65 \times 10^{3}\right)}{\pi d^{3}} .

=\left(\frac{331.04 \times 10^{3}}{d^{3}}\right) N / mm ^{2} .

\sigma_{m}=\sqrt{\sigma_{x m}^{2}+3 \tau_{x y m}^{2}} .

=\sqrt{\left(\frac{4074.37 \times 10^{3}}{d^{3}}\right)^{2}+3\left(\frac{687.55 \times 10^{3}}{d^{3}}\right)^{2}} .

=\left(\frac{4244.84 \times 10^{3}}{d^{3}}\right) N / mm ^{2} .

\sigma_{a}=\sqrt{\sigma_{x a}^{2}+3 \tau_{x y a}^{2}} .

=\sqrt{\left(\frac{2037.18 \times 10^{3}}{d^{3}}\right)^{2}+3\left(\frac{331.04 \times 10^{3}}{d^{3}}\right)^{2}} .

=\left(\frac{2116.33 \times 10^{3}}{d^{3}}\right) N / mm ^{2} .

Step II Construction of modified Goodman diagram

\tan \theta=\frac{\sigma_{a}}{\sigma_{m}}=\frac{2116.33}{4244.84}=0.4986 \text { or } \theta=26.5^{\circ} .

The modified Goodman diagram for this example is shown in Fig. 5.56.

Step III Permissible stress amplitude
Refer to Fig. 5.56. The co-ordinates of the point X are obtained by solving the following two equations simultaneously:

\frac{S_{a}}{200}+\frac{S_{m}}{540}=1           (a).

\frac{S_{a}}{S_{m}}=\tan \theta=0.4986         (b).

∴          S_{a}=114.76 N / mm ^{2} .

S_{m}=230.16 N / mm ^{2} .

Step IV Diameter of shaft

\text { Since } \sigma_{a}=\frac{S_{a}}{(f s)} \quad \therefore \quad \frac{2116.33 \times 10^{3}}{d^{3}}=\frac{114.76}{2} .

d = 33.29 mm.

5.56

Related Answered Questions