Question 5.13: A transmission shaft of cold drawn steel 27Mn2 (Sut = 500 N/...

A transmission shaft of cold drawn steel 27Mn2 \left(S_{u t}=500 N / mm ^{2} \text { and } S_{y t}=300 N / mm ^{2}\right) is subjected to a fluctuating torque which varies from –100 N-m to + 400 N-m. The factor of safety is 2 and the expected reliability is 90%. Neglecting the effect of stress concentration, determine the diameter of the shaft.
Assume the distortion energy theory of failure.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

\text { Given } M_{t}=-100 N – m \text { to }+400 N – m .

S_{u t}=500 N / mm ^{2} S_{y t}=300 N / mm ^{2} R=90 \%(f s)=2 .

Step I Endurance limit stress for shaft

S_{e}^{\prime}=0.5 S_{u t}=0.5(500)=250 N / mm ^{2} .

From Fig. 5.24 (cold drawn steel and

\left.S_{u t}=500 N / mm ^{2}\right) ,

K_{a}=0.79 .

Assuming 7.5 < d <50 mm,

K_{b}=0.85 .

\text { For } 90 \% \text { reliability, } K_{c}=0.897 .

S_{e}=K_{a} K_{b} K_{c} S_{e}^{\prime}=0.79(0.85)(0.897)(250) .

= 150.58 N/mm².

Step II Construction of modifi ed Goodman diagram
Using the distortion energy theory,

S_{s e}=0.577 S_{e}=0.577(150.58)=86.88 N / mm ^{2} .

S_{s y}=0.577 S_{y t}=0.577(300)=173.1 N / mm ^{2} .

\left(M_{t}\right)_{m}=\frac{1}{2}\left[\left(M_{t}\right)_{\max }+\left(M_{t}\right)_{\min }\right] .

=\frac{1}{2}[400-100]=150 N – m .

\left(M_{t}\right)_{a}=\frac{1}{2}\left[\left(M_{t}\right)_{\max }-\left(M_{t}\right)_{\min }\right] .

=\frac{1}{2}[400+100]=250 N – m .

\tan \theta=\frac{\left(M_{t}\right)_{a}}{\left(M_{t}\right)_{m}}=\frac{250}{150}=1.67 .

\theta=59.04^{\circ} .

The modified Goodman diagram for this example is shown in Fig. 5.44.

Step III Permissible shear stress amplitude
Refer to Fig. 5.44. The ordinate of the point X is S_{s e} or 86.88 N/mm².

\therefore \quad S_{s a}=86.88 N / mm ^{2} .

Step IV Diameter of shaft

\text { Since } \tau_{a}=\frac{S_{s a}}{(f s)} \quad \therefore \frac{16\left(M_{t}\right)_{a}}{\pi d^{3}}=\frac{S_{s a}}{(f s)} .

\frac{16\left(250 \times 10^{3}\right)}{\pi d^{3}}=\frac{86.88}{2} .

d = 30.83 mm.

5.44

Related Answered Questions