Question 9.30: A transmission shaft supported between two bearings and carr...

A transmission shaft supported between two bearings and carrying two concentrated masses is shown in Fig. 9.54. It is made of steel (E = 207 000 N/mm²). Assuming that the shaft has negligible mass, calculate the critical speed.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

\text { Given } E=207000 N / mm ^{2} d=50 mm .

m_{A}=35 kg \quad m_{B}=55 kg .

Step I Deflections at mass-A and mass-B
Suppose the masses of 35 and 55 kg are attached to the shaft at points A and B respectively.

W_{A}=35 g =35(9.81)=343.35 N .

W_{B}=55 g =55(9.81)=539.55 N .

The deflections at these masses are calculated by the method of superimposition. The configuration is similar to Case 7 of Table 9.4 (simply supported beam with intermediate load). Rewriting Eqs (27) and (28) with reference to Fig. 9.55(a),

Table 9.4 Bending moment and deflection of beams

Case 1 Cantilever Beam – End load
(A) Bending moments

\left(M_{b}\right) \text { at } O=-P l.         (1).

\left(M_{b}\right) \text { at } x=-P(l-x) .             (2).

(B) Deflections

\delta \text { at } x=\frac{P x^{2}}{6 E I}(x-3 l)              (3).

\delta_{\max .} \text { at }(x=l)=-\frac{P l^{3}}{3 E I}              (4).

Case 2 Cantilever Beam—Uniformly distributed load
(A) Bending moments

\left(M_{b}\right) \text { at } O=-\frac{w l^{2}}{2}            (5).

\left(M_{b}\right) \text { at } x=-\frac{w(l-x)^{2}}{2}             (6).

(B) Deflections

\delta \text { at } x=\frac{w x^{2}}{24 E I}\left(4 l x-x^{2}-6 l^{2}\right)            (7).

\delta_{\max .} \text { at }(x=l)=-\frac{w l^{4}}{8 E I}           (8).

Case 3 Cantilever Beam—Moment load
(A) Bending moments

\left(M_{b}\right) \text { at } O=\left(M_{b}\right) \text { at } x=\left(M_{b}\right)_{B}            (9).

(B) Deflections

\delta \text { at } x=\frac{\left(M_{b}\right)_{B} x^{2}}{2 E I}           (10).

\delta_{\max .} \text { at }(x=l)=\frac{\left(M_{b}\right)_{B} l^{2}}{2 E I}          (11).

Case 4 Simply supported beam—Centre load
(A) Bending moments

\left(M_{b}\right) \text { at } x=\frac{P x}{2}            (12).

\left(M_{b}\right) \text { at } x=\frac{P(l-x)}{2} \quad(x>1 / 2)            (13).

\left(M_{b}\right) \text { at } B=\frac{P l}{4}          (14).

(B) Deflections

\delta \text { at } x=\frac{P x\left(4 x^{2}-3 l^{2}\right)}{48 E I} \quad(0<x<1 / 2)              (15).

\delta_{\max .} \text { at } B=-\frac{P l^{3}}{48 E I}                   (16).

Case 5 Simply supported Beam—Uniformly distributed load
(A) Bending moments

\left(M_{b}\right) \text { at } x=\frac{w x(l-x)}{2}         (17).

\left(M_{b}\right) \text { at } l / 2=\frac{w l^{2}}{8}           (18).

(B) Deflections

\delta \text { at } x=\frac{w x\left(2 l x^{2}-x^{3}-l^{3}\right)}{24 E I}            (19),

\delta_{\max .} \text { at } l / 2=-\frac{5 w l^{4}}{384 E I}                 (20).

Case 6 Simply supported beam—Moment load
(A) Bending moments

\left(M_{b}\right) \text { at } x=\frac{\left(M_{b}\right)_{B} x}{l}(0<x<a)                     (21).

\left(M_{b}\right) \text { at } x=\frac{\left(M_{b}\right)_{B}(x-l)}{l}(a<x<l)               (22).

(B) Deflections

\delta \text { at } x=\frac{\left(M_{b}\right)_{B} x\left(x^{2}+3 a^{2}-6 a l+2 l^{2}\right)}{6 E I l} \quad(0<x< a )           (23).

\delta \text { at } x=\frac{\left(M_{b}\right)_{B}\left[x^{3}-3 l x^{2}+x\left(2 l^{2}+3 a^{2}\right)-3 a^{2} l\right]}{6 E I l}           (a < x < l)              (24).

Case 7 Simply supported Beam—Intermediate load
(A) Bending moment

\left(M_{b}\right) \text { at } x=\frac{P b x}{l} \quad(0<x<a)             (25). \left(M_{b}\right) \text { at } x=\frac{P a(l-x)}{l} \quad( a <x<l)           (26).

(B) Deflections

\delta \text { at } x=\frac{P b x\left(x^{2}+b^{2}-l^{2}\right)}{6 E I l} \quad(0<x<a)        (27).

\delta \text { at } x=\frac{P a(l-x)\left(x^{2}+a^{2}-2 l x\right)}{6 E I l}(a<x<l)            (28).

Case 8 Simply supported beam—Overhang load
(A) Bending moments

\left(M_{b}\right) \text { at } x=-\frac{P a x}{l} \quad(x<l) .             (29)

\left(M_{b}\right) \text { at } x=P(x-l-a) \quad(x>l)           (30)

(B) Deflections

\delta \text { at } x=\frac{\operatorname{Pax}\left(l^{2}-x^{2}\right)}{6 E I l} \quad(x<l)          (31).

\delta \text { at } x=\frac{P(x-l)\left[(x-l)^{2}-a(3 x-l)\right]}{6 E I} \quad(x>l)            (32).

\delta \text { at } C=-\frac{P a^{2}(l+a)}{3 E I}             (33).

\tau=\frac{2 M_{t}}{d b l}                 (9.27).

\sigma_{c}=\frac{4 M_{t}}{d h l}            (9.28)

\delta \text { at } x=\frac{P b x\left(x^{2}+b^{2}-l^{2}\right)}{6 E I l} \quad(0<x<a)             (a).

\delta \text { at } x=\frac{P a(l-x)\left(x^{2}+a^{2}-2 l x\right)}{6 E I l}(a<x<l)               (b).

Deflections due to force 343.35 N [Fig. 9.55 (b)]
a = 750 mm b = 1500 mm l = 2250 mm
The deflection \left(\delta_{A}\right)_{A} at the point A due to the force at A is given by Eq. (a).

x=750 mm (0<x<a) .

\left(\delta_{A}\right)_{A}=\frac{\operatorname{Pbx}\left(x^{2}+b^{2}-l^{2}\right)}{6 E I l} .

\left(\delta_{A}\right)_{A}=\frac{(343.55)(1500)(750)\left(750^{2}+1500^{2}-2250^{2}\right)}{6 E I(2250)} .

=\frac{-6.44(10)^{10}}{E I}              (i).

The deflection \left(\delta_{B}\right)_{A} at the point B due to the
force at A is given by Eq. (b).

x = 1750 mm              (x > a).

\left(\delta_{B}\right)_{A}=\frac{P a(l-x)\left(x^{2}+a^{2}-2 l x\right)}{6 E I l} .

\left(\delta_{B}\right)_{A}=\frac{(343.35)(750)(2250-1750)\left[1750^{2}+750^{2}-2(2250)(1750)\right]}{6 E I(2250)} .

=\frac{-4.05(10)^{10}}{E I}                   (ii).

Deflections due to force 539.55 N            [Fig. 9.55(c)]
a = 1750 mm            b = 500 mm             l = 2250 mm.

The deflection \left(\delta_{A}\right)_{B} at the point A due to the
force at B is given by Eq. (a).
x = 750 mm              (0 < x < a).

\left(\delta_{A}\right)_{B}=\frac{P b x\left(x^{2}+b^{2}-l^{2}\right)}{6 E I l} .

\left(\delta_{A}\right)_{B}=\frac{(539.55)(500)(750)\left(750^{2}+500^{2}-2250^{2}\right)}{6 E I(2250)} .

=\frac{-6.37(10)^{10}}{E I}                 (iii).

The deflection \left(\delta_{B}\right)_{B} at the point B due to the
force at B is given by Eq. (a).

x =1 750 mm              (0 < x < a).

\left(\delta_{B}\right)_{B}=\frac{P b x\left(x^{2}+b^{2}-l^{2}\right)}{6 E I l} .

\left(\delta_{B}\right)_{B}=\frac{(539.55)(500)(1750)\left(1750^{2}+500^{2}-2250^{2}\right)}{6 E I(2250)} .

=\frac{-6.12(10)^{10}}{E I}             (iv).

Superimposing the deflections,

\delta_{A}=\left(\delta_{A}\right)_{A}+\left(\delta_{A}\right)_{B} .

=\frac{-6.44(10)^{10}}{E I}+\frac{-6.37(10)^{10}}{E I}=\frac{-12.81(10)^{10}}{E I} .

\delta_{B}=\left(\delta_{B}\right)_{A}+\left(\delta_{B}\right)_{B} .

=\frac{-4.05(10)^{10}}{E I}+\frac{-6.12(10)^{10}}{E I}=\frac{-10.17(10)^{10}}{E I} .

The negative sign indicates downward deflection and it is neglected.

I=\frac{\pi d^{4}}{64}=\frac{\pi(50)^{4}}{64} mm ^{4} .

Substituting values of I and E,

\delta_{A}=\frac{-12.81(10)^{10}}{E I}=\frac{-12.81(10)^{10}}{(207000)\left(\frac{\pi(50)^{4}}{64}\right)} .

=2.017 mm =2.017\left(10^{-3}\right) m .

\delta_{B}=\frac{-10.17(10)^{10}}{E I}=\frac{-10.17(10)^{10}}{(207000)\left(\frac{\pi(50)^{4}}{64}\right)} .

=1.601 mm =1.601\left(10^{-3}\right) m .

Step II Critical speed of shaft
From Eq. (9.57),

\omega_{n}=\sqrt{\frac{g\left(W_{1} \delta_{1}+W_{2} \delta_{2}+\ldots \ldots . .\right)}{\left(W_{1} \delta_{1}^{2}+W_{2} \delta_{2}^{2}+\ldots \ldots . .\right)}}                    (9.57).

\omega_{n}=\sqrt{\frac{g\left(W_{1} \delta_{1}+W_{2} \delta_{2}\right)}{\left(W_{1} \delta_{1}^{2}+W_{2} \delta_{2}^{2}\right)}} .

=\sqrt{\frac{(9.81)\left[(343.35)(2.017)\left(10^{-3}\right)+(539.55)(1.601)\left(10^{-3}\right)\right]}{\left[(343.35)(2.017)^{2}\left(10^{-3}\right)^{2}+(539.55)(1.601)^{2}\left(10^{-3}\right)^{2}\right]}} .

=\sqrt{\frac{9.81(1556.36)(10)^{-3}}{2779.82(10)^{-6}}} .

= 74.11 rad/s
(1 revolution = 2p radians).

=\frac{74.11(60)}{2 \pi}=707.7 rpm .

9.55

Related Answered Questions