Question 4.7: A two-bit comparator gives an active-HIGH output, Y, if two ...

A two-bit comparator gives an active-HIGH output, Y, if two two-bit words, A and B, are the same. Give Y in fundamental sum of products form and then use Boolean algebra to show that Y=\overline{(A_{0}⊕B_{0})+(A_{1}⊕B_{1})}

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.
Y=\overline{A_{0}}  \overline{A_{1}}  \overline{B_{0}}  \overline{B_{1}} + \overline{A_{0}} A_{1}  \overline{B_{0}} B_{1}+A_{0} \overline{A_{1}} B_{0}  \overline{B_{1}}+A_{0} A_{1} B_{0} B_{1}

 

=\overline{A_{0}}  \overline{B_{0}} (\overline{A_{1}}  \overline{B_{1}}+A_{1} B_{1})+A_{0} B_{0}(\overline{A_{1}}  \overline{B_{1}}+A_{1} B_{1})

 

=(\overline{A_{0}}  \overline{B_{0}}+A_{0} B_{0})·(\overline{A_{1}}  \overline{B_{1}}+A_{1} B_{1})

 

=(\overline{(A_{0}⊕B_{0})}·\overline{(A_{1}⊕B_{1})})

 

=\overline{(A_{0}⊕B_{0})+(A_{1}⊕B_{1})}  De Morgan’s theorem

Related Answered Questions