A two-bit comparator gives an active-HIGH output, Y, if two two-bit words, A and B, are the same. Give Y in fundamental sum of products form and then use Boolean algebra to show that Y=\overline{(A_{0}⊕B_{0})+(A_{1}⊕B_{1})}
A two-bit comparator gives an active-HIGH output, Y, if two two-bit words, A and B, are the same. Give Y in fundamental sum of products form and then use Boolean algebra to show that Y=\overline{(A_{0}⊕B_{0})+(A_{1}⊕B_{1})}
=\overline{A_{0}} \overline{B_{0}} (\overline{A_{1}} \overline{B_{1}}+A_{1} B_{1})+A_{0} B_{0}(\overline{A_{1}} \overline{B_{1}}+A_{1} B_{1})
=(\overline{A_{0}} \overline{B_{0}}+A_{0} B_{0})·(\overline{A_{1}} \overline{B_{1}}+A_{1} B_{1})
=(\overline{(A_{0}⊕B_{0})}·\overline{(A_{1}⊕B_{1})})
=\overline{(A_{0}⊕B_{0})+(A_{1}⊕B_{1})} De Morgan’s theorem