Question 3.25: A two-step, steady state process is used to compress 100 kg/...

A two-step, steady state process is used to compress 100 kg/min of nitrogen from P=1 bar and T=250 K to P=10 bar and T=250 K. First, an adiabatic compressor is used to convert the nitrogen from P=1 bar and T=250 K to P=10 bar and T=300 K. Then a heat exchanger is used to cool the nitrogen to T=250 K. Find the work added in the compressor, and the heat removed in the heat exchanger.

A) Use an ideal gas model
B) Use Figure 2-3 as much as possible. If you need an equation of state, use the van der Waals equation, with a=1.37x10^6 \text{ bar}·{ cm }^{ 6 } /mol² and b=38.6 cm³/mol.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

A) For an ideal gas:

\begin{gathered}\mathrm{d} \underline{\mathrm{H}}=\mathrm{C}_{\mathrm{p}}^* \mathrm{dT} \\\left(\widehat{\mathrm{H}}_{\mathrm{out}}-\widehat{\mathrm{H}}_{\mathrm{in}}\right)=\mathrm{C}_{\mathrm{p}}^{*} \mathrm{dT}\end{gathered}

Set up an energy balance around the compressor

\begin{aligned}\frac{\mathrm{d}}{\mathrm{dt}}\left\{\mathrm { M } \left(\widehat{\mathrm{U}}+\frac{\mathrm{v}^{2}}{2}+\mathrm{gh}\right)\right\} \\& =\dot{\mathrm{m}}_{\mathrm{in}}\left(\widehat{\mathrm{H}}_{\mathrm{in}}+\frac{\mathrm{v}_{\text {in }}^{2}}{2}+\mathrm{gh}_{\mathrm{in}}\right)-\dot{\mathrm{m}}_{\mathrm{out}}\left(\widehat{\mathrm{H}}_{\mathrm{out}}+\frac{\mathrm{v}_{\mathrm{out}}^{2}}{2}+\mathrm{gh}_{\mathrm{out}}\right)+\dot{\mathrm{W}}_{\mathrm{S}}+\dot{\mathrm{W}}_{\mathrm{EC}}+\dot{\mathrm{Q}}\end{aligned}

Cancelling terms

\begin{aligned}0=\dot{\mathrm{m}}_{\mathrm{in}}\left(\widehat{\mathrm{H}}_{\mathrm{in}}\right)-\dot{\mathrm{m}}_{\mathrm{out}}\left(\widehat{\mathrm{H}}_{\mathrm{out}}\right)+\dot{\mathrm{W}}_{\mathrm{S}}\\100 \frac{\mathrm{kg}}{\min }\left(\widehat{\mathrm{H}}_{\text {out }}-\widehat{\mathrm{H}}_{\mathrm{in}}\right)=\dot{\mathrm{W}}_{\mathrm{S}}\end{aligned}

Using Appendix D

\begin{aligned}&\underline{\mathrm{d}} \underline{\mathrm{H}}=\mathrm{C}_{\mathrm{p}}{ }^{*} \mathrm{dT}\\&\frac{\mathrm{C}_{\mathrm{P}}^{*}}{\mathrm{R}}=\mathrm{A}+\mathrm{BT}+\mathrm{CT}^{2}+\mathrm{DT}^{3}+\mathrm{ET}^{4}\\&\mathrm{d} \underline{\mathrm{H}}=\left(\mathrm{RA}+\mathrm{RBT}+\mathrm{RCT}^{2}+\mathrm{RDT}^{3}+\mathrm{RET}^{4}\right) \mathrm{dT}\\&\int_{\text {out }}^{\text {in }} \mathrm{d} \underline{\mathrm{H}}=\int_{\text {out }}^{\text {in }}\left(\mathrm{RA}+\mathrm{RBT}+\mathrm{RCT}^{2}+\mathrm{RDT}^{3}+R E T^{4}\right) \mathrm{dT}\\&\left(\underline{\mathrm{H}}_{\text {out }}-\underline{\mathrm{H}}_{\text {in }}\right)=\mathrm{RA}\left(\mathrm{T}_{\text {out }}-\mathrm{T}_{\text {in }}\right)+\frac{\mathrm{RB}}{2}\left(\mathrm{~T}_{\text {out }}{ }^{2}-\mathrm{T}_{\text {in }}{ }^{2}\right)+\frac{\mathrm{RC}}{3}\left(\mathrm{~T}_{\text {out }}{ }^{3}-\mathrm{T}_{\text {in }}{ }^{3}\right) \\& \qquad\qquad+\frac{\mathrm{RD}}{4}\left(\mathrm{~T}_{\text {out }}^{4}-\mathrm{T}_{\text {in }}{ }^{4}\right)+\frac{\mathrm{RE}}{5}\left(\mathrm{~T}_{\text {out }}{ }^{5}-\mathrm{T}_{\text {in }}{ }^{5}\right) \\& \mathrm{T}_{\text {out }}=300 \mathrm{~K} \\& \mathrm{~T}_{\text {in }}=250 \mathrm{~K}\end{aligned}

\begin{array}{|c|c|c|c|c|c|c|} \hline\mathbf{Name} & \mathbf{Formula} & \mathbf{A} & \bf B\times10^3 & \bf C\times10^5 & \bf D\times10^8 & \bf E\times10^{11}\\ \hline \mathrm{Nitrogen} & \rm{N}_2 & 3.539 & -0.261 & 0.007 & 0.157 & -0.099\\\hline \end{array}

\begin{aligned}&\left(\underline{\mathrm{H}}_{\mathrm{out}}-\underline{\mathrm{H}}_{\mathrm{in}}\right)= \left(8.314 \frac{\mathrm{kJ}}{\mathrm{k~mol}~ \mathrm{K}}\right)\{(3.539)(300-250) \\& \qquad\qquad\quad +\frac{1}{2}\left(-2.61 \times 10^{-4}\right)\left(300^{2}-250^{2}\right)+\frac{1}{3}\left(7.00 \times 10^{-8}\right)\left(300^{3}-250^{3}\right) \\& \qquad\qquad\quad\left.+\frac{1}{4}\left(-1.57 \times 10^{-9}\right)\left(300^{4}-250^{4}\right)+\frac{1}{5}\left(9.9 \times 10^{-13}\right)\left(300^{5}-250^{5}\right)\right\}\\& \left(\underline{\mathrm{H}}_{\mathrm{out}}-\underline{\mathrm{H}}_{\text {in }}\right)=1454 \frac{\mathrm{kJ}}{\mathrm{kmol}}\\& \widehat{\mathrm{H}}_{\text {out }}-\widehat{\mathrm{H}}_{\mathrm{in}}=1454 \frac{\mathrm{kJ}}{\mathrm{kmol}}\left(\frac{\mathrm{kmol}}{28.02 \mathrm{~kg}}\right)=52.95 \frac{\mathrm{kJ}}{\mathrm{kg}}\\& 100 \frac{\mathrm{kg}}{\min }\left(\widehat{\mathrm{H}}_{\text {out }}-\widehat{\mathrm{H}}_{\mathrm{in}}\right)=\dot{\mathrm{W}}_{\mathrm{S}}\\& 100 \frac{\mathrm{kg}}{\min }\left(52.95 \frac{\mathrm{kJ}}{\mathrm{kg}}\right)=\dot{\mathrm{W}}_{\mathrm{S}}=5295 \frac{\mathbf{k J}}{\min }\end{aligned}

Since this is an ideal gas, we know that enthalpy is only influenced by Temperature. Therefore, the Energy balance yields a Q that is equal but opposite to our Shaft Work

Set up an energy balance around the heat exchanger

\begin{aligned}\frac{\mathrm{d}}{\mathrm{dt}}\left\{\mathrm { M } \left(\widehat{\mathrm{U}}+\frac{\mathrm{v}^{2}}{2}+\mathrm{gh}\right)\right\} \\& =\dot{\mathrm{m}}_{\text {in }}\left(\widehat{\mathrm{H}}_{\text {in }}+\frac{\mathrm{v}_{\text {in }}^{2}}{2}+\operatorname{gh}_{\text {in }}\right)-\dot{\mathrm{m}}_{\text {out }}\left(\widehat{\mathrm{H}}_{\text {out }}+\frac{\mathrm{v}_{\text {out }}^{2}}{2}+\mathrm{gh}_{\text {out }}\right)+\dot{\mathrm{W}}_{\mathrm{S}}+\dot{\mathrm{W}}_{\mathrm{EC}}+\dot{\mathrm{Q}}\end{aligned}

Cancelling terms

\begin{gathered}0=\dot{\mathrm{m}}_{\mathrm{in}}\left(\widehat{\mathrm{H}}_{\mathrm{in}}\right)-\dot{\mathrm{m}}_{\mathrm{out}}\left(\widehat{\mathrm{H}}_{\mathrm{out}}\right)+\dot{\mathrm{Q}}\\100 \frac{\mathrm{kg}}{\min }\left(\widehat{\mathrm{H}}_{\mathrm{out}}-\widehat{\mathrm{H}}_{\mathrm{in}}\right)=\dot{\mathrm{Q}}\\\left(\underline{\mathrm{H}}_{\mathrm{out}}-\underline{\mathrm{H}}_{\mathrm{in}}\right)=-1454 \frac{\mathrm{kJ}}{\mathrm{kmol}}\\\widehat{\mathrm{H}}_{\mathrm{out}}-\widehat{\mathrm{H}}_{\mathrm{in}}=-1454 \frac{\mathrm{kJ}}{\mathrm{kmol}}\left(\frac{\mathrm{kmol}}{28.02 \mathrm{~kg}}\right)=-52.95 \frac{\mathrm{kJ}}{\mathrm{kg}}\\100 \frac{\mathrm{kg}}{\min }\left(-52.95 \frac{\mathrm{kJ}}{\mathrm{kg}}\right)=\dot{\mathrm{Q}}=\bf-5295 \bf\frac{k J}{min}\end{gathered}

B) Set up an energy balance around the compressor

\begin{aligned}\frac{\mathrm{d}}{\mathrm{dt}}\left\{\mathrm { M } \left(\widehat{\mathrm{U}}+\frac{\mathrm{v}^{2}}{2}+\mathrm{gh}\right)\right\} \\& =\dot{\mathrm{m}}_{\mathrm{in}}\left(\widehat{\mathrm{H}}_{\mathrm{in}}+\frac{\mathrm{v}_{\text {in }}^{2}}{2}+\mathrm{gh}_{\mathrm{in}}\right)-\dot{\mathrm{m}}_{\mathrm{out}}\left(\widehat{\mathrm{H}}_{\mathrm{out}}+\frac{\mathrm{v}_{\text {out }}^{2}}{2}+g h_{\text {out }}\right)+\dot{\mathrm{W}}_{\mathrm{S}}+\dot{\mathrm{W}}_{\mathrm{EC}}+\dot{\mathrm{Q}}\end{aligned}

Cancelling terms

\begin{gathered}0=\dot{\mathrm{m}}_{\mathrm{in}}\left(\widehat{\mathrm{H}}_{\mathrm{in}}\right)-\dot{\mathrm{m}}_{\mathrm{out}}\left(\widehat{\mathrm{H}}_{\mathrm{out}}\right)+\dot{\mathrm{W}}_{\mathrm{S}}\\100 \frac{\mathrm{kg}}{\min }\left(\widehat{\mathrm{H}}_{\mathrm{out}}-\widehat{\mathrm{H}}_{\mathrm{in}}\right)=\dot{\mathrm{W}}_{\mathrm{S}}\end{gathered}

Using Figure 2-3, Find \widehat{\mathrm{H}}_{\mathrm{in}}

Nitrogen at 250 \mathrm{~K} and 1 \mathrm{bar} \rightarrow 408 \frac{\mathrm{kJ}}{\mathrm{kg}}

Find \widehat{\mathrm{H}}_{\mathrm{out}}

Nitrogen at 300 \mathrm{~K} and 10~ \mathrm{bar} \rightarrow 460 \frac{\mathrm{kJ}}{\mathrm{kg}}

100 \frac{\mathrm{kg}}{\min }\left(460 \frac{\mathrm{kJ}}{\mathrm{kg}}-408 \frac{\mathrm{kJ}}{\mathrm{kg}}\right)=\dot{\mathrm{W}}_{\mathrm{S}}=\bf 5200 \frac{\mathbf{kJ}}{\mathbf{min}}

Set up an energy balance around the heat exchanger

\begin{aligned}\frac{\mathrm{d}}{\mathrm{dt}}\left\{\mathrm { M } \left(\widehat{\mathrm{U}}+\frac{\mathrm{v}^{2}}{2}+\mathrm{gh}\right)\right\} \\& =\dot{\mathrm{m}}_{\text {in }}\left(\widehat{\mathrm{H}}_{\mathrm{in}}+\frac{\mathrm{v}_{\text {in }}^{2}}{2}+g h_{\text {in }}\right)-\dot{\mathrm{m}}_{\text {out }}\left(\widehat{\mathrm{H}}_{\mathrm{out}}+\frac{\mathrm{v}_{\text {out }}^{2}}{2}+g h_{\text {out }}\right)+\dot{\mathrm{W}}_{\mathrm{S}}+\dot{\mathrm{W}}_{\mathrm{EC}}+\dot{\mathrm{Q}}\end{aligned}

Cancelling terms

\begin{gathered}0=\dot{\mathrm{m}}_{\mathrm{in}}\left(\widehat{\mathrm{H}}_{\mathrm{in}}\right)-\dot{\mathrm{m}}_{\mathrm{out}}\left(\widehat{\mathrm{H}}_{\mathrm{out}}\right)+\dot{\mathrm{Q}}\\100 \frac{\mathrm{kg}}{\min }\left(\widehat{\mathrm{H}}_{\mathrm{out}}-\widehat{\mathrm{H}}_{\mathrm{in}}\right)=\dot{\mathrm{Q}}\end{gathered}

\widehat{\mathrm{H}}_{\mathrm{in}} for the heat exchanger is the same as \widehat{\mathrm{H}}_{\text {out }} from the compressor \rightarrow 450 \frac{\mathrm{kJ}}{\mathrm{kg}}

Using Figure 2-3, Find \widehat{\mathrm{H}}_{\text {out }}

Nitrogen at 250 \mathrm{~K} and 10 \mathrm{bar} \rightarrow 402 \frac{\mathrm{kJ}}{\mathrm{kg}}

100 \frac{\mathrm{kg}}{\min }\left(402 \frac{\mathrm{kJ}}{\mathrm{kg}}-460 \frac{\mathrm{kJ}}{\mathrm{kg}}\right)=\dot{\mathrm{Q}}=\bf-5800 \bf\frac{k J}{min}

Related Answered Questions