Question 7.P.10: (a) Use the relation dmm′^(j) (β) = ∑m1m2 ∑m1′m2′ 〈j1, j2; ...

(a) Use the relation

d^{(j)}_{mm^{\prime } } (\beta )=\sum\limits_{m_{1}m_{2} } \sum\limits_{m^{\prime }_{1} m^{\prime }_{2}} 〈j_{1},j_{2}; m_{1}, m_{2}|j,m 〉 〈j_{1},j_{2};m^{\prime }_{1},m^{\prime }_{2}|j,m^{\prime } 〉d^{(j_{1}) }_{m_{1} m^{\prime }_{1}} (\beta ) d^{(j_{2})}_{m_{2} m^{\prime }_{2}} (\beta ),

for the case where j_{1}=1 and j_{2}=\frac{1}{2} along with the Clebsch–Gordan coefficients derived in (7.206) to (7.209),

\left|\frac{3}{2},\frac{3}{2} \right\rangle =\left|1,\frac{1}{2};1,\frac{1}{2} \right\rangle ,        (7.206)

 

\left|\frac{3}{2},\frac{1}{2} \right\rangle =\sqrt{\frac{2}{3} } \left|1,\frac{1}{2};0,\frac{1}{2} \right\rangle +\frac{1}{\sqrt{3} } \left|1,\frac{1}{2};1,-\frac{1}{2} \right\rangle ,             (7.207)

 

\left|\frac{3}{2},-\frac{1}{2} \right\rangle =\frac{1}{\sqrt{3} }\left|1,\frac{1}{2};-1,\frac{1}{2} \right\rangle + \sqrt{\frac{2}{3} } \left|1,\frac{1}{2};0,-\frac{1}{2} \right\rangle ,            (7.208)

 

\left|\frac{3}{2},-\frac{3}{2} \right\rangle =\left|1,\frac{1}{2};-1,-\frac{1}{2} \right\rangle ,    (7.209)

and the matrix elements of d^{(1/2)} (\beta ) and d^{(1)} (\beta ),which are given by (7.89)

d^{(1/2)} (\beta )=e^{-i\beta \hat{J} _{y}/\hbar }=\left(\begin{matrix} d^{(1/2)}_{\frac{1}{2}\frac{1}{2}} & d^{(1/2)}_{\frac{1}{2}-\frac{1}{2}} \\ d^{(1/2)}_{-\frac{1}{2}\frac{1}{2}} & d^{(1/2)}_{-\frac{1}{2}-\frac{1}{2}} \end{matrix} \right) =\left(\begin{matrix} \cos (\beta /2) & -\sin (\beta /2) \\ \sin (\beta /2) & \cos (\beta /2) \end{matrix} \right).          (7.89)

and (7.423),

d^{(1)} (\beta )=e^{-i\beta \hat{J} _{y}/\hbar }=\left(\begin{matrix} \cos ^{2} (\beta /2) & -\frac{1}{\sqrt{2} }\sin (\beta ) & \sin ^{2} (\beta /2) \\ \frac{1}{\sqrt{2} }\sin (\beta ) & \cos (\beta ) & -\frac{1}{\sqrt{2} }\sin (\beta ) \\ \sin ^{2} (\beta /2) & \frac{1}{\sqrt{2} }\sin (\beta ) & \cos ^{2} (\beta /2) \end{matrix} \right).         (7.423)

respectively, to find the expressions of the matrix elements of d^{(3/2)}_{\frac{3}{2}\frac{3}{2}}(\beta ),d^{(3/2)}_{\frac{3}{2}\frac{1}{2}}(\beta ),d^{(3/2)}_{\frac{3}{2}-\frac{1}{2}}(\beta ),d^{(3/2)}_{\frac{3}{2}-\frac{3}{2}}(\beta ),d^{(3/2)}_{\frac{1}{2}\frac{1}{2}}(\beta ), and d^{(3/2)}_{\frac{1}{2}-\frac{1}{2}}(\beta ).

(b) Use the six expressions derived in (a) to infer the matrix of d^{(3/2)} (\beta ).

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a) Using 〈1,\frac{1}{2};1,\frac{1}{2}|\frac{3}{2},\frac{3}{2} 〉 1,d^{(1)}_{11} (\beta )=\cos ^{2} (\beta /2) and d^{(1/2)}_{\frac{1}{2}\frac{1}{2}}(\beta )=\cos (\beta /2), we
have

d^{(3/2)}_{\frac{3}{2}\frac{3}{2}}(\beta )= \left\langle 1,\frac{1}{2};1,\frac{1}{2}|\frac{3}{2},\frac{3}{2}\right\rangle \left\langle 1,\frac {1}{2};1,\frac{1}{2}|\frac{3}{2},\frac{3}{2}\right\rangle d^{(1)}_{11} (\beta ) d^{(1/2)}_{\frac{1}{2}\frac{1}{2}}(\beta )=\cos ^{3} \left(\frac {\beta }{2} \right) .         (7.424)

Similarly, since 〈1,\frac{1}{2};0,\frac{1}{2}|\frac{3}{2},\frac{1}{2} 〉=\sqrt{2/3} ,〈1,\frac{1}{2};1,-\frac{1}{2}|\frac{3}{2},\frac{1}{2} 〉=1/ \sqrt{3} , and since d^{(1)}_{10} (\beta )=-(1/\sqrt{2} )\sin (\beta ) and d^{(1/2)}_{\frac{1}{2}-\frac{1}{2}}(\beta )=-\sin (\beta /2),we have

d^{(3/2)}_{\frac{3}{2}\frac{1}{2}}(\beta )= \left\langle 1,\frac {1}{2};1,\frac{1}{2}|\frac{3}{2},\frac{3}{2}\right\rangle \left\langle 1,\frac{1}{2};0,\frac{1}{2}|\frac{3}{2},\frac{1}{2}\right\rangle d^{(1)}_{10} (\beta )d^{(1/2)}_{\frac{1}{2}\frac{1}{2}}(\beta )

 

+\left\langle 1,\frac{1}{2};1,\frac{1}{2}|\frac{3}{2},\frac{3}{2} \right\rangle \left\langle 1,\frac{1}{2};1,-\frac{1}{2}|\frac{3}{2},\frac {1}{2}\right\rangle d^{(1)}_{11} (\beta ) d^{(1/2)}_{\frac{1}{2}-\frac {1}{2}}(\beta )

 

=-\frac{1}{\sqrt{3} } \sin \beta \cos \left(\frac{\beta }{2} \right) -\frac{1}{\sqrt{3} }\cos ^{2} \left(\frac{\beta }{2} \right)\sin \left (\frac{\beta }{2} \right)

 

=-\sqrt{3} \sin \left(\frac{\beta }{2} \right) \cos ^{2} \left(\frac {\beta }{2} \right) .                                (7.425)

To calculate d^{(3/2)}_{\frac{3}{2}-\frac{1}{2}}(\beta ), we need to use the coefficients 〈1,\frac{1}{2};0,-\frac{1}{2}|\frac {3}{2},-\frac{1}{2} 〉=\sqrt{2/3} and 〈1,\frac{1}{2};-1, \frac{1}{2}|\frac{3}{2},-\frac{1}{2} 〉=1/\sqrt{3} along with d^{(1)}_{1,-1} (\beta )=\sin ^{2}(\beta /2):

d^{(3/2)}_{\frac{3}{2}-\frac{1}{2}}(\beta )= \left\langle 1,\frac {1}{2};1,\frac{1}{2}|\frac{3}{2},\frac{3}{2}\right\rangle \left\langle 1, \frac{1}{2};-1,\frac{1}{2}|\frac{3}{2},-\frac{1}{2}\right\rangle d^{(1) }_{1-1} (\beta )d^{(1/2)}_{\frac{1}{2}\frac{1}{2}}(\beta )

 

+\left\langle 1,\frac{1}{2};1,\frac{1}{2}|\frac{3}{2},\frac{3}{2} \right\rangle \left\langle 1,\frac{1}{2};0,-\frac{1}{2}|\frac{3}{2},-\frac {1}{2}\right\rangle d^{(1)}_{10} (\beta ) d^{(1/2)}_{\frac{1}{2}-\frac {1}{2}}(\beta )

 

=\frac{1}{\sqrt{3} } \sin ^{2} \left(\frac{\beta }{2} \right) \cos \left(\frac{\beta }{2} \right) +\frac{1}{\sqrt{3} }\sin \beta \sin \left (\frac{\beta }{2} \right)

 

=\sqrt{3} \sin ^{2} \left(\frac{\beta }{2} \right) \cos \left(\frac {\beta }{2} \right) .                                         (7.426)

For d^{(3/2)}_{\frac{3}{2}-\frac{3}{2}}(\beta ) we have

d^{(3/2)}_{\frac{3}{2}-\frac{3}{2}}(\beta )=\left\langle 1,\frac {1}{2};1,\frac{1}{2}|\frac{3}{2},\frac{3}{2}\right\rangle \left\langle 1, \frac{1}{2};-1,-\frac{1}{2}|\frac{3}{2},-\frac{3}{2}\right\rangle d^{(1) }_{1-1} (\beta ) d^{(1/2)}_{\frac{1}{2},-\frac{1}{2}}(\beta )=-\sin ^{3} \left(\frac{\beta }{2} \right),            (7.427)

because 〈1,\frac{1}{2};-1,-\frac{1}{2}|\frac{3}{2},-\frac{3}{2} 〉=1,d^{(1)}_{1-1} (\beta )=\sin ^{2} (\beta /2), and d^{(1/2)}_{\frac{1}{2}-\frac{1}{2}} (\beta )=-\sin (\beta /2).

To calculate d^{(3/2)}_{\frac{1}{2}\frac{1}{2}} (\beta ), we need to use the coefficients 〈1,\frac{1}{2};0,\frac{1}{2}|\frac {3}{2},\frac{1}{2} 〉=\sqrt{2/3} and 〈1,\frac{1}{2};1,-\frac{1}{2}|\frac{3}{2},\frac{1}{2} 〉=1/\sqrt{3} along with d^{(1)}_{1-1} (\beta )=\sin ^{2} (\beta /2):

d^{(3/2)}_{\frac{1}{2}\frac{1}{2}} (\beta )=\left\langle 1,\frac {1}{2};1,-\frac{1}{2}|\frac{3}{2},\frac{1}{2}\right\rangle \left\langle 1,\frac{1}{2};1,-\frac{1}{2}|\frac{3}{2},\frac{1}{2}\right\rangle d^{(1) }_{11} (\beta ) d^{(1/2)}_{-\frac{1}{2}-\frac{1}{2}} (\beta )

 

+\left\langle 1,\frac{1}{2};0,\frac{1}{2}|\frac{3}{2},\frac{1}{2} \right\rangle \left\langle 1,\frac{1}{2};1,-\frac{1}{2}|\frac{3}{2},\frac {1}{2}\right\rangle d^{(1)}_{01} (\beta ) d^{(1/2)}_{\frac{1}{2}-\frac {1}{2}}(\beta )

 

+\left\langle 1,\frac{1}{2};0,\frac{1}{2}|\frac{3}{2},\frac{1}{2} \right\rangle \left\langle 1,\frac{1}{2};0,\frac{1}{2}|\frac{3}{2},\frac {1}{2}\right\rangle d^{(1)}_{00} (\beta ) d^{(1/2)}_{\frac{1}{2}\frac {1}{2}}(\beta )

 

+\left\langle 1,\frac{1}{2};1,-\frac{1}{2}|\frac{3}{2},\frac{1}{2} \right\rangle \left\langle 1,\frac{1}{2};0,\frac{1}{2}|\frac{3}{2},\frac {1}{2}\right\rangle d^{(1)}_{10} (\beta ) d^{(1/2)}_{-\frac{1}{2}\frac {1}{2}}(\beta )

 

=\frac{1}{3} \cos ^{3} \left(\frac{\beta }{2} \right)-\frac{1}{3} \sin (\beta )\sin \left(\frac{\beta }{2} \right)+\frac{2}{3} \cos (\beta )\cos \left(\frac{\beta }{2} \right)-\frac{1}{3}\sin (\beta)\sin \left (\frac{\beta }{2} \right)

 

=\left[3 \cos ^{2} \left(\frac{\beta }{2} \right)-2\right] \cos \left(\frac{\beta }{2} \right)

 

=\frac{1}{2}(3\cos \beta -1)\cos \left(\frac{\beta }{2} \right) .                                                      (7.428)

Similarly, we have

d^{(3/2)}_{\frac{1}{2}-\frac{1}{2}} (\beta )=\left\langle 1,\frac {1}{2};1,-\frac{1}{2}|\frac{3}{2},\frac{1}{2}\right\rangle \left\langle 1, \frac{1}{2};-1,\frac{1}{2}|\frac{3}{2},-\frac{1}{2}\right\rangle d^{(1) }_{1-1} (\beta ) d^{(1/2)}_{-\frac{1}{2}\frac{1}{2}} (\beta )

 

+\left\langle 1,\frac{1}{2};1,-\frac{1}{2}|\frac{3}{2},\frac{1}{2} \right\rangle \left\langle 1,\frac{1}{2};0,-\frac{1}{2}|\frac{3}{2},-\frac {1}{2}\right\rangle d^{(1)}_{10} (\beta ) d^{(1/2)}_{-\frac{1}{2}-\frac {1}{2}}(\beta )

 

+\left\langle 1,\frac{1}{2};0,\frac{1}{2}|\frac{3}{2},\frac{1}{2} \right\rangle \left\langle 1,\frac{1}{2};-1,\frac{1}{2}|\frac{3}{2},-\frac {1}{2}\right\rangle d^{(1)}_{0-1} (\beta ) d^{(1/2)}_{\frac{1}{2}\frac {1}{2}}(\beta )

 

+\left\langle 1,\frac{1}{2};0,\frac{1}{2}|\frac{3}{2},\frac{1}{2} \right\rangle \left\langle 1,\frac{1}{2};0,-\frac{1}{2}|\frac{3}{2},-\frac {1}{2}\right\rangle d^{(1)}_{00} (\beta ) d^{(1/2)}_{\frac{1}{2}-\frac {1}{2}}(\beta )

 

=\frac{1}{3} \sin ^{3} \left(\frac{\beta }{2} \right)-\frac{1}{3} \sin (\beta )\cos \left(\frac{\beta }{2} \right)-\frac{1}{3} \sin (\beta ) \cos \left(\frac{\beta }{2} \right)-\frac{2}{3}\cos (\beta)\sin \left (\frac{\beta }{2} \right)

 

=-\left[3 \cos ^{2} \left(\frac{\beta }{2} \right)-1\right] \sin \left(\frac{\beta }{2} \right)

 

=-\frac{1}{2}(3\cos \beta +1)\sin \left(\frac{\beta }{2} \right) .                                                                       (7.429)

(b) The remaining ten matrix elements of d^{(3/2)} (\beta ) can be inferred from the six elements derived above by making use of the properties of the d-function listed in (7.67).

d^{(j)}_{m^{\prime } m} (\beta )=(-1)^{m^{\prime }-m} d^{(j)}_{mm^{\prime } } (\beta )=(-1)^{m^{\prime }-m}d^{(j)}_{-m^{\prime } -m} (\beta ).                 (7.67)

For instance, using d^{(j)}_{m^{\prime } m} (\beta )=(-1)^{m^ {\prime }-m}d^{(j)}_{-m^{\prime } -m} (\beta ), we can verify that

d^{(3/2)}_{-\frac{3}{2}-\frac{3}{2}}(\beta )=d^{(3/2)}_{\frac {3}{2}\frac{3}{2}}(\beta ),       d^{(3/2)}_{-\frac{1}{2}-\frac{1}{2}}(\beta )=d^{(3/2)}_{\frac{1}{2}\frac{1}{2}}(\beta ),       d^{(3/2)}_{-\frac{3}{2}-\frac{1}{2}}(\beta )=-d^{(3/2)}_{\frac{3}{2}\frac{1}{2}}(\beta ) ,    (7.430)

 

d^{(3/2)}_{-\frac{3}{2}\frac{1}{2}}(\beta )=d^{(3/2)}_{\frac {3}{2}-\frac{1}{2}}(\beta ),       d^{(3/2)}_{-\frac{3}{2}\frac{3}{2}}(\beta )=-d^{(3/2)}_{\frac{3}{2}-\frac{1}{2}}(\beta ),       d^{(3/2)}_{-\frac{1}{2}\frac{1}{2}}(\beta )=-d^{(3/2)}_{\frac{3}{2}-\frac{1}{2}}(\beta ) .    (7.431)

Similarly, using d^{(j)}_{m^{\prime } m} (\beta )=(-1)^{m^ {\prime }-m} d^{(j)}_{mm^{\prime } } (\beta ) we can obtain the remaining four elements:

d^{(3/2)}_{\frac{1}{2}\frac{3}{2}}(\beta )=-d^{(3/2)}_{\frac {3}{2}\frac{1}{2}}(\beta ),           d^{(3/2)}_{-\frac{1}{2}\frac{3}{2}}(\beta )=d^{(3/2)}_{\frac{3}{2}-\frac{1}{2}}(\beta ) ,                (7.432)

 

d^{(3/2)}_{\frac{1}{2}-\frac{3}{2}}(\beta )=d^{(3/2)}_{-\frac {3}{2}\frac{1}{2}}(\beta ),           d^{(3/2)}_{-\frac{1}{2}-\frac{3}{2}}(\beta )=-d^{(3/2)}_{-\frac{3}{2}-\frac{1}{2}}(\beta ) .               (7.433)

Collecting the six matrix elements calculated in (a) along with the ten elements inferred above, we obtain the matrix of d^{(3/2)} (\beta ):

\left(\begin{matrix} \cos ^{3}\left(\frac{\beta }{2} \right) & -\sqrt{3}\sin \left(\frac{\beta }{2} \right)\cos ^{2}\left(\frac{\beta }{2} \right) & \sqrt{3}\sin ^{2}\cos \left(\frac{\beta }{2} \right) & -\sin ^{3}\left(\frac{\beta }{2} \right) \\ \sqrt{3}\sin \left(\frac{\beta }{2} \right)\cos ^{2}\left(\frac{\beta }{2} \right) & \frac{1}{2}(3\cos \beta -1)\cos \left(\frac{\beta }{2} \right) & -\frac{1}{2}(3\cos \beta +1)\sin \left(\frac{\beta }{2} \right) &\sqrt{3} \sin ^{2}\left(\frac{\beta }{2} \right)\cos \left(\frac{\beta }{2} \right) \\ \sqrt{3}\sin ^{2}\left(\frac {\beta }{2} \right)\cos \left(\frac{\beta }{2} \right) & \frac{1}{2}(3\cos \beta +1)\sin \left(\frac{\beta }{2} \right) & \frac{1}{2}(3\cos \beta -1)\cos \left(\frac{\beta }{2} \right) & -\sqrt{3}\sin \left(\frac{\beta }{2} \right)\cos ^{2}\left(\frac{\beta }{2} \right) \\ \sin ^{3}\left(\frac {\beta }{2} \right) & \sqrt{3}\sin ^{2}\left(\frac{\beta }{2} \right)\cos \left(\frac{\beta }{2} \right) &\sqrt{3}\sin \left(\frac{\beta }{2} \right) \cos ^{2}\left(\frac{\beta }{2} \right) & \cos ^{3}\left(\frac{\beta }{2} \right) \end{matrix} \right) ,      (7.434)

which can be reduced to

d^{(3/2)} (\beta )=\frac{\sin \beta }{2} \left(\begin{matrix} \frac{\cos ^{2} (\beta /2)}{\sin (\beta /2)} & -\sqrt{3}\cos \left(\frac {\beta }{2} \right) & \sqrt{3}\sin \left(\frac{\beta }{2} \right) & -\frac {\sin ^{2} (\beta /2)}{\cos (\beta /2)} \\ \sqrt{3}\cos \left(\frac {\beta }{2} \right) & \frac{3\cos \beta -1}{2\sin (\beta /2)} & -\frac{3\cos \beta +1}{2\sin (\beta /2)} & \sqrt{3}\sin \left(\frac{\beta }{2} \right) \\ \sqrt{3}\sin \left(\frac{\beta }{2} \right) & \frac{3\cos \beta +1}{\cos (\beta /2)} & \frac{3\cos \beta -1}{2\sin (\beta /2)} & -\sqrt{3} \cos \left(\frac{\beta }{2} \right) \\ \frac{\sin ^{2} (\beta /2)}{\cos (\beta /2)} & \sqrt{3}\sin \left(\frac{\beta }{2} \right) & \sqrt{3}\cos \left(\frac{\beta }{2} \right) & \frac{\cos ^{2} (\beta /2)}{\sin (\beta /2)} \end{matrix} \right) .   (7.435)

Following the method outlined in this problem, we can in principle find the matrix of any d-function. For instance, using the matrices of d^{(1)} and d^{(1/2)} along with the Clebsch–Gordan coefficients resulting from the addition of j_{1} =1 and j_{2} =1, we can find the matrix of d^{(2)} (\beta ).

Related Answered Questions

To find the matrix of d^{(1)} (\beta )=e^{-...