(a) Using Equations 5.66 and 5.70, show that the wave function for a particle in the periodic delta function potential can be written in the form
\psi(x)=A \sin (k x)+B \cos (k x), \quad(0<x<a) (5.66).
A \sin (k a)=\left[e^{i q a}-\cos (k a)\right] B (5.70).
\psi(x)=C\left\{\sin (k x)+e^{-i q a} \sin [k(a-x)]\right\}, \quad(0 \leq x \leq a) .
(Don’t bother to determine the normalization constant C.)
(b) At the top of a band, where z = jπ, (a) yields \psi(x)=0 / 0 (indeterminate). Find the correct wave function for this case. Note what happens to ψ at each delta function.