Question 5.24: (a) Using Equations 5.66 and 5.70, show that the wave functi...

(a) Using Equations 5.66 and 5.70, show that the wave function for a particle in the periodic delta function potential can be written in the form

\psi(x)=A \sin (k x)+B \cos (k x), \quad(0<x<a)                  (5.66).

A \sin (k a)=\left[e^{i q a}-\cos (k a)\right] B                  (5.70).

\psi(x)=C\left\{\sin (k x)+e^{-i q a} \sin [k(a-x)]\right\}, \quad(0 \leq x \leq a) .

(Don’t bother to determine the normalization constant C.)

(b) At the top of a band, where z = jπ, (a) yields \psi(x)=0 / 0 (indeterminate). Find the correct wave function for this case. Note what happens to ψ at each delta function.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a) Equations 5.66 and 5.70 \Rightarrow \psi=A \sin k x+B \cos k x ; \quad A \sin k a=\left[e^{i q a}-\cos k a\right] B .

\psi(x)=A \sin (k x)+B \cos (k x), \quad(0<x<a)                  (5.66).

A \sin (k a)=\left[e^{i q a}-\cos (k a)\right] B                  (5.70).

So

\psi=A \sin k x+\frac{A \sin k a}{\left(e^{i q a}-\cos k a\right)} \cos k x=\frac{A}{\left(e^{i q a}-\cos k a\right)}\left[e^{i q a} \sin k x-\sin k x \cos k a+\cos k x \sin k a\right] .

=C\left\{\sin k x+e^{-i q a} \sin [k(a-x)]\right\}, \text { where } C \equiv \frac{A e^{i q a}}{e^{i q a}-\cos k a} .

(b) If z = ka = jπ, then sin ka = 0, Eq. 5.71 \Rightarrow \cos q a=\cos k a=(-1)^{j} \Rightarrow \sin q a=0, \text { so } e^{i q a}=\cos q a+i \sin q a=(-1)^{j} , and the constant C involves division by zero. In this case we must go back to Eq. 5.70, which is a tautology (0=0) yielding no constraint on A or B, Eq. 5.68 holds automatically, and Eq. 5.69 gives

\cos (q a)=\cos (k a)+\frac{m \alpha}{\hbar^{2} k} \sin (k a)                  (5.71).

B=e^{-i q a}[A \sin (k a)+B \cos (k a)]                (5.68).

k A-e^{-i q a} k[A \cos (k a)-B \sin (k a)]=\frac{2 m \alpha}{\hbar^{2}} B                (5.69).

A \sin (k a)=\left[e^{i q a}-\cos (k a)\right] B                  (5.70).

k A-(-1)^{j} k\left[A(-1)^{j}-0\right]=\frac{2 m \alpha}{\hbar^{2}} B \Rightarrow B=0 . \quad \text { So } \psi=A \sin k x .

Here ψ is zero at each delta spike, so the wave function never \feels” the potential at all.

Related Answered Questions