Question 14.19: (a) Using the process, sensor, and valve transfer functions ...

(a) Using the process, sensor, and valve transfer functions in Exercise 11.21, find the ultimate controller gain K_{c u} using a Bode plot. Using simulation, verify that values of K_{c}>K_{c u} cause instability.

(b) Next fit a FOPTD model to G and tune a PI controller for a set-point change. What is the gain margin for the controller?

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a)

G=G_{p} G_{v} G_{m}=\frac{2 e^{-1.5 s}}{(60 s+1)(5 s+1)} \frac{0.5 e^{-0.3 s}}{3 s+1} \frac{3 e^{-0.2 s}}{2 s+1}=\frac{3 e^{-2 s}}{(60 s+1)(5 s+1)(3 s+1)(2 s+1)}

\omega_{ c } occurs where \varphi=-180

\begin{aligned}&\omega_{c}=0.152 \quad A R\left(\omega_{c}\right)=0.227 \\&K_{a u}=\frac{1}{A R\left(\omega_{c}\right)}=4.41\end{aligned}

Simulation results with different K c are shown in Fig. S14.19b. K c>K c u, the system becomes unstable as expected.

(b)

Use Skogestad’s half rule

\begin{aligned}&\tau=60+0.5 \times 5=62.5 \\&\theta=2.5+3+2+2=9.5\end{aligned}

The approximated FOPTD model:

G=\frac{3 e^{-9.5 s}}{62.5 s+1}

Using Table 12.3, K_{c}=0.586(9.5 / 62.5)^{-0.916} / 3=1.10;

\tau_{I}=\frac{62.5}{-0.165(9.5 / 62.5)+1.03}=62.19

Then,

\begin{aligned}&G_{c}=1.10\left(1+\frac{1}{62.19 s}\right), G_{O L}=G G_{c} \\&\omega_{c} \text { occurs where } \varphi=-180: \\&\omega_{c}=0.153 \quad A R\left(\omega_{c}\right)=0.249 \\&K_{c u}=\frac{1}{A R\left(\omega_{c}\right)}=4.02\end{aligned}

Table 12.3 Guidelines for choosing \tau_{c} for the IMC and SIMC tuning methods and an FOPTD model
Recommendations Conditions References
\tau_{c}=\left\{\begin{array}{c}0.5 \theta \\\theta \\1.5 \theta\end{array}\right. aggressive control default value smooth responses Grimholt and Skogestad (2013)
\tau_{c}=3 \theta robust control Åström and Hägglund (2006, p. 187); McMillan (2015, p. 29)
\left.\begin{array}{l}\tau_{c}>\tau \\\tau_{c}=2-3 \tau\end{array}\right\} \left.\begin{array}{l}\text{default value} \\\text{robust control}\end{array}\right\} Blevins et al. (2013, p. 102)
14.19a
14.19b

Related Answered Questions