Question 10.3: A variable-displacement hydraulic motor supplied with a cons...

A variable-displacement hydraulic motor supplied with a constant flow source is used to vary the output speed of an inertia-damper load, as shown in Fig. 10.13. The displacement of the motor D_{m} is proportional to the stroke lever angle Ψ , and the motor has leakage resistance R_{f}, rotor inertia J_{m}, and bearing and windage friction B_{m}. The load torque T_{l} is a second input to the system, in addition to the motor stroke Ψ . Develop the state-variable equation(s) for this system.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

The detailed symbolic diagram for this system is shown in Fig. 10.14. The elemental equations are as follows: For the leakage resistor,

Q_{R} =Q_{s}-Q_{t}=\frac{1}{R_{f} } P_{12} .          (10.33)

For the transducer,

T_{t} =C_{1} \psi P_{12} ,          (10.34)

\Omega =\frac{1}{C_{1}\psi } .Q_{t} .          (10.35)

For the inertias and dampers,

T_{t} -T_{1} =\left(J_{m}+J_{1} \right) \frac{d\Omega }{dt} +\left(B_{m}+B_{1} \right)\Omega .          (10.36)

Combining Eqs. (10.33), (10.34), and (10.36) and multiplying all terms by R_{f} C_{1}  yields

T_{t} =C_{1} \psi R_{f } Q_{s} -\left(C_{1} \psi\right) ^{2} R_{f} \Omega .          (10.37)

Combine Eqs. (10.36) and (10.37) to eliminate T_{t}:

C_{1} \psi R_{f } Q_{s} -\left(C_{1} \psi\right) ^{2} R_{f} \Omega -T_{1}=\left(J_{m} +J_{1} \right) \frac{d\Omega }{dt}+ \left(B_{m} +B_{1} \right)\Omega .          (10.38)

Divide all terms by \left(J_{m} +J_{1} \right) and rearrange into state-variable format:

\frac{d\Omega }{dt} =-\frac{B_{m} +B_{1} +\left(C_{1}\psi \right) ^{2}R_{f} }{J_{m} +J_{1}} \Omega +\frac{C_{1}\psi R_{f} }{J_{m} +J_{1}} Q_{s} -\frac{1}{J_{m} +J_{1}} T_{1} .          (10.39)

In this example, the fluid resistor R_{f} is transformed into an equivalent displacement-referenced damper \left(C_{1}\psi \right) ^{2}R_{f}  on the mechanical side of the system.

52

Related Answered Questions