The elemental equations for small perturbations in all variables are as follows: For the linear resistor,
\hat{P} _{12} =R_{f}\hat{Q} _{R} . (9.21)
For the fluid capacitor,
\hat{Q} _{c} =C_{f} \frac{d\hat{P} _{2r} }{dt}. (9.22)
For the time-varying NLR,
\hat{Q} _{NLR} =\left(\frac{C_{1}\overline{A_{0} } }{2\mid \overline{P} _{2r} \mid ^{0.5} } \right) \hat{P} _{2r}+C_{1} \mid \overline{P} _{2r}\mid ^{0.5} \hat{A} _{o} . (9.23)
To satisfy continuity at (1),
\hat{Q} _{R} =\hat{Q} _{s}. (9.24)
To satisfy continuity at (2),
\hat{Q} _{R} =\hat{Q} _{C}+\hat{Q} _{NLR}. (9.25)
The compatibility relation,
\hat{P} _{1r} =\hat{P} _{12}+\hat{P} _{2r}, (9.26)
is not needed here because of a lack of interest in finding \hat{P} _{1r}.
Combining Eqs. (9.22)–(9.25) to eliminate \hat{Q} _{R},\hat{Q} _{C} and \hat{Q} _{NLR} yields
\hat{Q} _{s} =C_{f} \frac{d\hat{P} _{2r} }{dt}+\left(\frac{C_{1}\overline{A_{0} } }{2\mid \overline{P} _{2r} \mid ^{0.5} } \right) \hat{P} _{2r}+C_{1} \mid \overline{P} _{2r}\mid ^{0.5} \hat{A} _{o}. (9.27)
Because Q_{s} is constant, \hat{Q} _{s} is zero, and the output terms on the right-hand side may be rearranged to yield the system input–output differential equation for small perturbations in all variables:
C_{f} \frac{d\hat{P} _{2r} }{dt}+\left(\frac{C_{1}\overline{A_{0} } }{2\mid \overline{P} _{2r} \mid ^{0.5} } \right) \hat{P} _{2r}=-C_{1} \mid \overline{P} _{2r}\mid ^{0.5} \hat{A} _{o}. (9.28)