Question 4.P.11: (a) Verify that the matrices representing the operators X an...

(a) Verify that the matrices representing the operators \hat{X} and \hat{P} in the N-space for a harmonic oscillator obey the correct commutation relation [\hat{X},\hat{P}]=i\hbar.

(b) Show that the energy levels of the harmonic oscillator can be obtained by inserting the matrices of \hat{X} and \hat{P} into the Hamiltonian \hat{H}=\hat{P}^{2}/(2m)+\frac{1}{2}m\omega ^{2}\hat{X}^{2}.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a) Using the matrices of \hat{X} and \hat{P} in (4.181)

\tan \left(k\frac{a}{2} \right) =\frac{\hbar ^{2}k}{mV_{0} } \Longrightarrow \tan \left(\sqrt{\frac{ma^{2}|E| }{2\hbar ^{2}} } \right) =\sqrt{\frac{2\hbar ^{2}|E|}{mV^{2}_{0} } }

and (4.182),

E(a)\simeq \frac{1}{2m}\left(\frac{\hbar }{2a} \right) ^{2} +\frac{1}{2}m\omega ^{2}a^{2}

we obtain

\hat{X}\hat{P}=i\frac{\hbar }{2}\left(\begin{matrix} 1 & 0 & -\sqrt{2} & … \\ 0 & 1 & 0 & … \\ \sqrt{2} & 0 & 1 & … \\ \vdots & \vdots & \vdots & \ddots \end{matrix} \right),       \hat{X}\hat{P}=i\frac{\hbar }{2}\left(\begin{matrix} -1 & 0 & -\sqrt{2} & … \\ 0 & -1 & 0 & … \\ \sqrt{2} & 0 & -1 & … \\ \vdots & \vdots & \vdots & \ddots \end{matrix} \right);    (4.292)

hence

\hat{X}\hat{P}-\hat{P}\hat{X}=i\hbar \left(\begin{matrix} 1 & 0 & 0 & … \\ 0 & 1 & 0 & … \\ 0 & 0 & 1 & … \\ \vdots & \vdots & \vdots & \ddots \end{matrix} \right)                    (4.293)

or [\hat{X},\hat{P}]=i\hbar I, where I is the unit matrix.
(b) Again, using the matrices of \hat{X} and \hat {P} in (4.181) and (4.182), we can verify that

\hat{X}^{2}=\frac{\hbar }{2m\omega } \left(\begin{matrix} 1 & 0 & \sqrt{2} & … \\ 0 & 3 & 0 & … \\ \sqrt{2} & 0 & 5 & … \\ \vdots & \vdots & \vdots & \ddots \end{matrix} \right),        \hat{P}^{2}=-\frac{m\hbar \omega }{2} \left(\begin{matrix} -1 & 0 & \sqrt{2} & … \\ 0 & -3 & 0 & … \\ \sqrt{2} & 0 & -5 & … \\ \vdots & \vdots & \vdots & \ddots \end{matrix} \right);      (4.294)

hence

\frac{\hat{P}^{2}}{2m} +\frac{1}{2}m\omega ^{2}\hat{X}^{2} =\frac{\hbar \omega }{2} \left(\begin{matrix} 1 & 0 & 0 & … \\ 0 & 3 & 0 & … \\ 0 & 0 & 5 & … \\ \vdots & \vdots & \vdots & \ddots \end {matrix} \right).               (4.295)

The form of this matrix is similar to the result we obtain from an analytical treatment, E_{n}=\hbar \omega (2n+1)/2, since

H_{n\prime n} =〈n^{\prime }|\hat{H}|n 〉=\frac{\hbar \omega }{2}(2n+1) \delta _{n\prime n}.                        (4.296)

Related Answered Questions