Question 10.45: A vertical engine running at 1200 rpm with a stroke of 120 m...

A vertical engine running at 1200 rpm with a stroke of 120 mm, has a connecting rod 300 mm long and of 1.5 kg mass. The mass centre of the rod is 100 mm from the big end centre. When the rod is suspended from the gudgeon pin as a pendulum, it makes 20 complete oscillations in 20 seconds.
(a) Calculate the radius of gyration of the rod about an axis through the mass centre. (b) When the crank is at 35° from the top dead centre and the piston is moving downwards, find the acceleration of the piston and the angular acceleration of the rod. Hence, find the inertia torque exerted on the crankshaft.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Angular speed        \omega=\frac{2 \pi \times 1200}{60}=126.66 rad / s .

L=120 mm \text { or } r =\frac{L}{2}=60 mn .

l=300 mm , m=1.5 kg , \theta=35^{\circ}, n=\frac{l}{r}=\frac{300}{600}=5 .

(a) Radius of gyration of the rod
Distance of the centre of gravity of rod from the point of suspension,

l_{1}=300-100=200 mm .

Frequency of oscillation of a compound pendulum,

f_{n}=\left(\frac{1}{2 \pi}\right)\left[\frac{g l_{1}}{K^{2}+l_{1}^{2}}\right]^{0.5} .

\frac{20}{20}=\left(\frac{1}{2 \pi}\right)\left[\frac{9.81 \times 200 \times 10^{3}}{K^{2}+200^{2}}\right]^{0.5} .

4 \pi^{2}=\frac{9.81 \times 200 \times 10^{3}}{K^{2}+200^{2}} .

or  K^{2}+40000=49698 .

or  K^{2}=9698 .

or  K=98.47 mm.

(b) Acceleration of the connecting rod:

Angular acceleration of the rod,    f_{r}=-\omega^{2} \frac{\sin \theta}{n} .

=-(126.66)^{2} \frac{\sin 35^{\circ}}{5} .

=-1840.35 rad / s ^{2} .

Acceleration of the piston,      f_{p}=\omega^{2} r\left[\cos \theta+\frac{\cos 2 \theta}{n}\right] .

=(126.66)^{2} \times 0.06\left[\cos 35^{\circ}+\frac{\cos 70^{\circ}}{5}\right] .

=854.33 m / s ^{2} .

Inertia torque exerted on the crankshaft

\text { Mass of the rod at the gudgeon pin, } m_{g}=\frac{m\left(l-l_{1}\right)}{l}=\frac{1.5(300-200)}{300}=0.5 kg .

\text { Vertical inertia force due to } m_{g}, \quad F_{i}=m_{g} f_{p}=0.5 \times 854.33=427.16 N.

Now          \sin \phi=\frac{\sin \theta}{n}=\frac{\sin 35^{\circ}}{5}=0.1147 .

\phi=6.587^{\circ} .

\frac{O M}{\sin (\theta+\phi)}=\frac{r}{\cos \phi} .

O M=\frac{60 \sin 41.587^{\circ}}{\cos 6.587^{\circ}}=40.1 mm .

\text { Torque due to } F_{i} ,          T=-F_{i} \cdot O M=-427.16 \times 0.0401 .

=-17.125 Nm \text { or } 17.125 Nm \text { (counter-clockwise) } .

Equivalent length of a pendulum, l_{e}=\frac{K^{2}+l_{1}^{2}}{l_{1}}=\frac{9698+200^{2}}{200}=248.49 mm .

Correction couple,    T_{o}=-m l_{1}\left(l-l_{e}\right) \alpha_{r} .

=-1.5 \times 200(300-248.49) 10^{-6} \times 1840.35 .

= –28.44 N m.

\text { Corresponding torque on the crankshaft, } T_{c s}=\frac{T_{o} \cos \theta}{n}=\frac{-28.44 \cos 35^{\circ}}{5}=-4.66 Nm .

=4.66 N m (counter-anticlockwise).

Torque due to the mass at the gudgeon pin,

T_{g}=m_{g} g \cdot O M=0.5 \times 9.81 \times 0.0401 .

=0.1967 N m (clockwise).

Equivalent mass of the rod at the crank pin,  m_{c}=\frac{1.5 \times 200}{300}=1 kg .

Torque due to this mass,    T_{c}=m_{c} g \cdot l \sin \phi=1 \times 9.81 \times 0.3 \times \sin 6.587^{c} .

= 0.3376 N m (clockwise).

\text { Inertia torque exerted on the crankshaft }=T+T_{c s}-T_{g}-T_{c} .

=17.125+4.66-0.1967-0.3376 .

= 21.25 N m (counter-clockwise).

Related Answered Questions