Question 2.5.5: A wave travelling in the + z -direction is the resultant of ...

A wave travelling in the + z -direction is the resultant of two linearly polarized components, E_{x} = 3cosωt, and Ey = 2cos(ωt + 45°). Determine

(a) the axial ratio, and

(b) the angle between the major axis of the polarization ellipse and the +x axis.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Wave is travelling in +z direction.

\begin{aligned}&E_{ x }=3 \cos \omega t \\&E_{ y }=2 \cos \left(\omega t +45^{\circ}\right) \\&t \text { varies from } 0 \text { to } T=\frac{2 \pi}{\omega} \\& OA _{\max }= OP =\text { semi major axis of ellipse. } \\& OA _{\min }= OQ \\&O A^{2}=E^{2}=E_{x}^{2}+E_{y}^{2} \\&E^{2}=(3 \cos \omega t)^{2}+\left(2 \cos \left(\omega t+45^{\circ}\right)\right)^{2}\end{aligned}

 

(O A)^{2}=E^{2}=6.5+4.5 \cos (2 \omega t )-2 \sin 2 \omega t                   (1)

O A \text { is max, when, } \frac{d E}{d t}=0 , and Solving (1)

\begin{aligned}&\tan (2 \omega t )=-4 / 9 \\&\Rightarrow \omega t =-11.98^{\circ} \\&\text { So, } E_{ x }=3 \cos (11.98)=2.934 \\&E_{ y }=2 \cos (-11.98+45)=1.676 \\&E=\sqrt{E_{x}^{2}+E_{y}^{2}}=3.378 \\&\text { at, } \omega t =78.02 \\&E_{ y }=0.6227 \text { and } E_{ y }=-1.08 \\&E=\sqrt{E_{x}^{2}+E_{y}^{2}}=1.246 \\&\text { So, } E_{\max }=3.3378 \\&E_{\min }=1.246 \\&\text { Axial ratio }=\frac{E_{\max }}{E_{\min }}=\frac{3.378}{1.246}=2.71\end{aligned}

(b)  \tan \theta=\frac{E_{y}}{E x} \text { at } \operatorname{Emax}

 

\tan \theta=\frac{1.676}{2.934} \Rightarrow \vartheta=29.73^{\circ}
2.5

Related Answered Questions