Question 3.142: A wheel of diameter d and width w carrying a load F rolls on...

A wheel of diameter d and width w carrying a load F rolls on a flat rail.
Assume that Fig. 3–39, which is based on a Poisson’s ratio of 0.3, is applicable to estimate the depth at which the maximum shear stress occurs for these materials. At this critical depth, calculate the Hertzian stresses \sigma_{x}, \sigma_{y}, \sigma_{z}, and τmax for the wheel.

\begin{array}{cccccc}\hline \text { Problem } & & & & \text { Wheel } & \text { Rail } \\\text { Number } & d & w & F & \text { Material } & \text { Material } \\\hline 3 - 1 4 0 & 5  in & 2 \text { in } & 600  lbf & \text { Steel } & \text { Steel } \\3 - 1 4 1 & 150  mm & 40  mm & 2  kN & \text { Steel } & \text { Cast iron } \\3 - 1 4 2 & 3 \text { in } & 1.25  mm & 250  lbf & \text { Cast iron } & \text { Cast iron } \\\hline\end{array}

A wheel of diameter d and width w carrying a load F rolls on a flat rail. Assume that Fig. 3–39, which is based on a Poisson’s ratio of 0.3, is applicable to estimate the depth at which the maximum shear stress occurs for these materials. At this critical depth, calculate the Hertzian stresses σx ,

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Note to the Instructor: The first printing incorrectly had a width w = 1.25 mm instead of w = 1.25 in. The solution presented here reflects the correction which will be made in subsequent printings.

Use Eqs. (3-73) through (3-77).

\begin{aligned}b &=\left(\frac{2 F}{\pi l} \frac{\left(1-v_{1}^{2}\right) / E_{1}+\left(1-v_{2}^{2}\right) / E_{2}}{1 / d_{1}+1 / d_{2}}\right)^{1 / 2} \\&=\left(\frac{2(250)}{\pi(1.25)} \frac{\left(1-0.211^{2}\right) /\left[14.5\left(10^{6}\right)\right]+\left(1-0.211^{2}\right) /\left[14.5\left(10^{6}\right)\right]}{1 / 3+1 / \infty}\right)^{1 / 2} \\b &=0.007095 \text { in }\end{aligned}

 

p_{\max }=\frac{2 F}{\pi b l}=\frac{2(250)}{\pi(0.007095)(1.25)}=17946  psi

 

\begin{aligned}\sigma_{x} &=-2 v p_{\max }\left(\sqrt{1+\frac{z^{2}}{b^{2}}}-\left|\frac{z}{b}\right|\right)=-2(0.211)(17946)\left(\sqrt{1+0.786^{2}}-0.786\right) \\&=-3680  psi =-3.68  kpsi \end{aligned}

 

\begin{aligned}\sigma_{y} &=-p_{\max }\left(\frac{1+2 \frac{z^{2}}{b^{2}}}{\sqrt{1+\frac{z^{2}}{b^{2}}}}-2\left|\frac{z}{b}\right|\right)=-17946\left(\frac{1+2\left(0.786^{2}\right)}{\sqrt{1+\left(0.786^{2}\right)}}-2(0.786)\right) \\&=-3332  psi =-3.33  kpsi \end{aligned}

 

\sigma_{z}=\frac{-p_{\max }}{\sqrt{1+\frac{z^{2}}{b^{2}}}}=\frac{-17946}{\sqrt{1+0.786^{2}}}=-14109  psi =-14.1  kpsi

 

\tau_{\max }=\frac{\sigma_{y}-\sigma_{z}}{2}=\frac{-3332-(-14109)}{2}=5389  psi =5.39  kpsi

______________________________________________________________________________________________________________

Eq. (3-73): b=\sqrt{\frac{2 F}{\pi l} \frac{\left(1-v_{1}^{2}\right) / E_{1}+\left(1-v_{2}^{2}\right) / E_{2}}{1 / d_{1}+1 / d_{2}}}

Eq. (3-74): p_{\max }=\frac{2 F}{\pi b l}

Eq. (3-75): \sigma_{x}=-2 v p_{\max }\left(\sqrt{1+\frac{z^{2}}{b^{2}}}-\left|\frac{z}{b}\right|\right)

Eq. (3-76): \sigma_{y}=-p_{\max }\left(\frac{1+2 \frac{z^{2}}{b^{2}}}{\sqrt{1+\frac{z^{2}}{b^{2}}}}-2\left|\frac{z}{b}\right|\right)

Eq. (3-77): \sigma_{3}=\sigma_{z}=\frac{-p_{\max }}{\sqrt{1+z^{2} / b^{2}}}

Related Answered Questions