Question 7.3: (a) Write the state-variable equations based on the energy-s...

(a) Write the state-variable equations based on the energy-storage elements L and C for the circuit shown in Fig. 7.13(a).
(b) Linearize these equations for small perturbations of all variables.
(c) Combine to eliminate the unwanted variable and obtain the input–output system differential equation relating the output \widehat{e} _{2g} to the input \widehat{e} _{s}\left(t\right).
(d) Draw the simulation block diagram for the linearized system.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a) In general, the state-variable for a capacitor is its voltage e_{2g}, and the state variable for an inductor is its current i_{L}. Thus, for the inductor L,

\frac{di_{L} }{dt} =\frac{1}{L} \left(e_{2g} -e_{23} \right)

or

\frac{di_{L} }{dt} =\frac{-1}{L} f_{NL} \left(i_{L} \right) +\frac{1}{L} e_{2g},          (7.39)

and for the capacitor C,

\frac{de_{2g} }{dt} =\frac{1}{C} \left( i_{R1}-i_{L} \right)

or

\frac{de_{2g} }{dt} =\frac{1}{C} \left(\frac{e_{s}-e_{2g} }{R_{1} }-i_{L} \right).

Rearranging yields

\frac{de_{2g} }{dt} =\left(\frac{-1}{C} \right) i_{L} +\left(\frac{-1}{R_{1}C } \right) e_{2g} +\left(\frac{1}{R_{1}C } \right) e_{s}.          (7.40)

Note that Eqs. (7.39) and (7.40) comprise a set of nonlinear state-variable equations for the circuit.

Because of the nonlinear function f_{NL} \left(i_{L} \right), Eqs. (7.39) and (7.40) cannot be combined to eliminate i_{L} until they are linearized for small perturbations of all variables. 

(b) After linearizing, Eqs. (7.39) and (7.40) become

\frac{d\widehat{i} _{L} }{dt} =\left(\frac{-1}{L} \right) \frac{de_{23} }{di_{L} } \mid _{\bar{i} L} \widehat{i} _{L} + \left(\frac{1}{L }\right) \widehat{e} _{2g},          (7.41)

\frac{d\widehat{e} _{2g} }{dt} =\left(\frac{-1}{C} \right) \widehat{i} _{L} +\left(\frac{-1}{R_{1}C } \right) \widehat{e} _{2g}+\left(\frac{1}{R_{1}C } \right) \widehat{e} _{2g}.          (7.42)

(c) Equations (7.41) and (7.42) may now be combined as follows to eliminate \widehat{i} _{L}. Solving Eq. (7.42) for \widehat{i} _{L} yields

\widehat{i} _{L} =-C\frac{d\widehat{e} _{2g} }{dt} -\left(\frac{1}{R_{1} } \right) \widehat{e} _{2g}+\left(\frac{1}{R_{1} } \right) \widehat{e} _{s}

Substituting the expression for \widehat{i} _{L} in Eq. (7.41) and using R_{inc} =\frac{de_{2g} }{di_{L} } \mid _{\bar{i} L} yields 

-C\frac{d^{2}\widehat{e} _{2g}}{dt^{2} }-\frac{1}{R_{1} } \frac{d\widehat{e} _{2g} }{dt} +\frac{1}{R_{1} } \frac{d\widehat{e} _{s} }{dt}=-\frac{R_{inc} }{L} \left(-C\frac{d\widehat{e} _{2g} }{dt}-\frac{\widehat{e} _{2g} }{R_{1} } -\frac{\widehat{e} _{s} }{R_{1} } \right) +\frac{\widehat{e} _{2g} }{L}.

Collecting terms, we have

C\frac{d^{2}\widehat{e} _{2g}}{dt^{2} }+\left(\frac{L+R_{1}R_{inc}C }{R_{1} L} \right) \frac{d\widehat{e} _{2g} }{dt}+\left(\frac{R_{inc}+R_{1} }{R_{1} L} \right)\widehat{e} _{2g} =\frac{1}{R_{1} } \frac{d\widehat{e} _{s} }{dt}+\frac{R_{inc} }{LR_{1} } \widehat{e} _{s} .          (7.43)

(d) The simulation block diagram for the linearized system appears in Fig. 7.13(b).

24
25

Related Answered Questions