After taking off, a helicopter climbs in a straight line at a constant angle \beta. Its flight is tracked by radar from Point A. Determine the speed of the helicopter in terms of d, \beta, \theta and \dot { \theta }.
After taking off, a helicopter climbs in a straight line at a constant angle \beta. Its flight is tracked by radar from Point A. Determine the speed of the helicopter in terms of d, \beta, \theta and \dot { \theta }.
From the diagram
\frac{r}{\sin \left(180^{\circ}-\beta\right)}=\frac{d}{\sin (\beta-\theta)}
or \quad d \sin \beta=r(\sin \beta \cos \theta-\cos \beta \sin \theta)
or \quad r=d \frac{\tan \beta}{\tan \beta \cos \theta-\sin \theta}
Then
\begin{aligned}\dot{r} & =d \tan \beta \frac{-(-\tan \beta \sin \theta-\cos \theta)}{(\tan \beta \cos \theta-\sin \theta)^{2}} \dot{\theta} \\& =d \dot{\theta} \tan \beta \frac{\tan \beta \sin \theta+\cos \theta}{(\tan \beta \cos \theta-\sin \theta)^{2}}\end{aligned}
From the diagram
\nu_{r}=\nu \cos (\beta-\theta) \quad \text { where } \quad \nu_{r}=\dot{r}
Then
\begin{aligned}d \dot{\theta} \tan \beta \frac{\tan \beta \sin \theta+\cos \theta}{(\tan \beta \cos \theta-\sin \theta)^{2}} & =\nu(\cos \beta \cos \theta+\sin \beta \sin \theta) \\& =\nu \cos \beta(\tan \beta \sin \theta+\cos \theta)\end{aligned}
or \quad\quad\quad\quad\nu=\frac{d \dot{\theta} \tan \beta \sec \beta}{(\tan \beta \cos \theta-\sin \theta)^{2}}\blacktriangleleft
Alternative solution.
We have \quad \nu^{2}=\nu_{r}^{2}+\nu_{\theta}^{2}=(\dot{r})^{2}+(r \dot{\theta})^{2}
Using the expressions for r and \dot{r} from above
Note that as \theta increases, the helicopter moves in the indicated direction. Thus, the positive root is chosen.
\nu=\frac{d \dot{\theta} \tan \beta \sec \beta}{(\tan \beta \cos \theta-\sin \theta)^{2}}\blacktriangleleft