Question 7.235E: Air at 1 atm, 60 F is compressed to 4 atm, after which it is...

Air at 1 atm, 60 F is compressed to 4 atm, after which it is expanded through a nozzle back to the atmosphere. The compressor and the nozzle both have efficiency of 90% and kinetic energy in/out of the compressor can be neglected. Find the actual compressor work and its exit temperature and find the actual nozzle exit velocity.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Steady state separate control volumes around compressor and nozzle. For ideal compressor we have inlet : 1 and exit : 2
Adiabatic :     q = 0.
Reversible:    s _{ gen }=0

Energy Eq.:          h _{1}+0= w _{ C }+ h _{2};

Entropy Eq.:        s _{1}+0 / T +0= s _{2}

Ideal compressor:        w _{ c }= h _{1}- h _{2}, \quad s _{2}= s _{1}

The constant s from Eq. 6.23 gives

\begin{aligned}T _{2} &= T _{1}\left( P _{2} / P _{1}\right)^{\frac{ k -1}{ k }}=(459.7+60)  R \times(4 / 1)^{0.2857}=772   R \\\Rightarrow- w _{ C } &= h _{2}- h _{1}= C _{ P }\left( T _{2}- T _{1}\right)=0.24(772-519.7)=60.55   Btu / lbm\end{aligned}

 

Actual compressor:      w_{ c , AC }= w _{ c , s } / \eta _{ c }=-67.3 B tu / lbm = h _{1}- h _{3}

\Rightarrow \quad T _{3}= T _{1}- w _{ c , AC } / C _{ P }=519.7+67.3 / 0.24= 8 0 0   R

Ideal nozzle:        s _{4}= s _{3}                  so use Eq.6.23 again

\Rightarrow T _{4}= T _{3} \times\left( P _{4} / P _{3}\right)^{\frac{ k -1}{ k }}=800(1 / 4)^{0.2857}=538.4  R

 

V _{ s }^{2} / 2= h _{3}- h _{4}= C _{ P }\left( T _{3}- T _{4}\right)=0.24(800-538.4)=62.78   Btu / lbm

 

V _{ AC }^{2} / 2= V _{ s }^{2} \times \eta_{ NOZ } / 2=62.78 \times 0.9=56.5   Btu / lbm

 

V _{ AC }=\sqrt{2 \times 56.5 \times 25037}= 1 6 8 2   \mathrm { ft } / \mathrm { s }

 

Remember conversion  1  Btu / lbm =25037   ft ^{2} / s ^{2}  from Table A.1.

 

………………………………………

Eq.6.23 : \frac{T_{2}}{T_{1}}=\left(\frac{P_{2}}{P_{1}}\right)^{(k-1) / k}

 

1
A.1.1
A.1.2
A.1.3
A.1.4
A.1.5

Related Answered Questions