Question 11.11: Air at 68^◦ F flows in a prototype 1300-ft-long circular pip...

Air at 68^{ \circ} F flows in a prototype 1300-ft-long circular pipe with a diameter of 3 ft and an absolute pipe roughness of 0.03 ft, as illustrated in Figure EP 11.11. A smaller model of the larger prototype is designed in order to study the flow characteristics of turbulent pipe flow. The model fluid is water at 70^{ \circ} F , the velocity of water in the smaller model pipe is 50 ft/sec, and the model scale, λ is 0.2. The flow resistance is modeled by the friction factor, f = 8 C_{D} . (a) Determine the pressure drop (and head loss) in the flow of the water in the model. (b) Determine the velocity flow of the air in the prototype pipe flow in order to achieve dynamic similarity between the model and the prototype. (c) Determine the pressure drop (and head loss) in the flow of the air in the prototype in order to achieve dynamic similarity between the model and the prototype.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a) In order to determine the pressure drop (and head loss) in flow of the water in the model, the major head loss equation, Equation 11.122 h_{f} = \frac{\tau _{w}L}{\gamma R_{h}} = \frac{\Delta p}{\gamma } = S_{f}L = C_{D}\rho v^{2} \frac{L}{\gamma R_{h}} = \frac{v^{2}L}{C^{2}R_{h}} = f \frac{L}{D} \frac{v^{2}}{2g} = \left(\frac{vn}{R_{h}^{2/3}} \right)^{2}L , is applied as follows:

h_{f} = \frac{\Delta p}{\gamma } = f \frac{L}{D} \frac{v^{2}}{2g}

where the friction factor, f is used to model the flow resistance. Because the Reynolds number, R > 4,000 (turbulent pipe flow) is assumed, the friction factor, f is only a function of ɛ/D and independent of R, as illustrated in by the Moody diagram in Figure 8.1. However the Colebrook equation, Equation 8.33 C = \sqrt{\frac{8g}{f} } , presents a mathematical representation of the Moody diagram in Figure 8.1. Furthermore, in order to determine the length, diameter, and the absolute pipe roughness of the model pipe, the model scale, λ (inverse of the length ratio) is applied. The fluid properties for water are given in Table A.2 in Appendix A.

D_{p}: = 3 ft                                     L_{p}: = 1300 ft                                     \varepsilon _{p} : = 0.03 ft                   \lambda : = 0.2

Guess value:                              D_{m}: = 0.1 ft                                     L_{m}: = 1 ft                                     \varepsilon _{m}: = 0.01 ft

Given

\lambda = \frac{D_{m}}{D_{p}}                                     \lambda = \frac{L_{m}}{L_{p}}                                     \lambda = \frac{\varepsilon _{m}}{\varepsilon _{p}}
\left ( \begin{matrix} D_{m} \\ L_{m} \\ \varepsilon _{m} \end{matrix} \right ) : = Find (D_{m}, L_{m}, \varepsilon _{m}) = \left ( \begin{matrix} 0.6 \\ 260 \\ 6 \times 10^{-3} \end{matrix} \right ) ft
slug: = 1 lb \frac{sec^{2}}{ft}                                     \rho _{m} : = 1.936 \frac{slug}{ft^{3}}                                     \mu _{m} : = 20.5 \times 10^{-6} lb \frac{sec}{ft^{2}}

g: = 32.174 \frac{ft}{sec^{2}}                                     \gamma _{m}: = \rho _{m}. g = 62.289 \frac{lb}{ft^{3}}                                     V_{m}: = 50 \frac{ft}{sec}

R_{m}: = \frac{\rho _{m} .V_{m} .D_{m}}{\mu _{m}} = 2.833 \times 10^{6}

Guess value:                                     h_{fm}: = 1 ft                                     \Delta P_{m}: = 1 \frac{lb}{ft^{2}}                                     f_{m}: = 0.01

Given

h_{fm} = f_{m} \frac{L_{m}}{D_{m}} \frac{v^{2}_{m}}{2g}                                     \frac{1}{\sqrt{f_{m}} } = – 2 log \left(\frac{\frac{\varepsilon _{m}}{D_{m}} }{3.7} + \frac{2.51 }{R_{m}. \sqrt{f_{m}} } \right)
\Delta P_{m} = h_{fm} . \gamma _{m}
\left ( \begin{matrix} h_{fm} \\ \Delta P_{m} \\ f_{m} \end{matrix} \right ) : = Find (h_{fm, \Delta P_{m} , f_{m}})

h_{fm}= 638.493 ft                                     \Delta P_{m} = 3.977 \times 10^{4} \frac{lb}{ft^{2}}                                     f_{m}= 0.038

(b)–(c) To determine the velocity flow of the air in the prototype pipe flow in order to achieve dynamic similarity between the model and the prototype for turbulent pipe flow and to determine the pressure drop (and head loss) in the flow of the air in the prototype in order to achieve dynamic similarity between the model and the prototype for turbulent pipe flow, the ɛ/D must remain a constant between the model and prototype as follows:

\left(\frac{\varepsilon}{D} \right)_{p} = \left(\frac{\varepsilon }{D } \right)_{m}
\frac{\varepsilon _{p}}{D_{p}} = 0.01                                     \frac{\varepsilon _{m}}{D_{m}} = 0.01

However, because the friction factor, f is in dependent of R for turbulent flow, R does not need to remain a constant between the model and the prototype.
(b)–(c) To determine the velocity flow of the air in the prototype pipe flow in order to achieve dynamic similarity between the model and the prototype for turbulent pipe flow and to determine the pressure drop (and head loss) in the flow of the air in the prototype in order to achieve dynamic similarity between the model and the prototype for turbulent pipe flow, the friction factor, f must remain a constant between the model and the prototype (which is a direct result of maintaining a constant ɛ/D between the model and the prototype, and applying the “pressure model” similitude scale ratio, specifically the velocity ratio, v r given in Table 11.1) as follows:

\underbrace{\left[\frac{\frac{h_{f}}{v^{2}L} }{2gD} \right]_{p} }_{f_{p}} = \underbrace{\left[\frac{\frac{h_{f}}{v^{2}L} }{2gD} \right]_{m} }_{f_{m}}
v_{r} = \frac{v_{p}}{v_{m}} = \frac{\left(\sqrt{\frac{\Delta p}{\rho } } \right)_{p} }{\left(\sqrt{\frac{\Delta p}{\rho } } \right)_{m} } = \Delta p_{r}^{\frac{1}{2} } \rho _{r}^{\frac{-1}{2} }

The fluid properties for air are given in Table A.5 in Appendix A.

\rho _{p} : = 0.00231 \frac{slug}{ft^{3}}                                     \mu _{p} : = 0.376 \times 10^{-6} lb \frac{sec}{ft^{2}}                                     \gamma _{p} : = \rho _{p}. g = 0.074 \frac{lb}{ft^{3}}

Guess value:                                     V_{p}: = 1 \frac{ft}{sec}                                     h_{fp}: = 1 ft                                     \Delta p_{p}: = 1 \frac{lb}{ft^{2}}                                     f_{p}: = 0.01

Given

f_{p} = \frac{h_{fp}}{\left(\frac{V^{2}_{p}. L_{p}}{2.g. D_{p}} \right) }                                     \frac{V_{P}}{\Delta p_{p}^{\frac{1}{2} }. \rho _{p}^{\frac{- 1}{2}} } = \frac{V_{m}}{\Delta p_{m}^{\frac{1}{2} }. \rho _{m}^{\frac{- 1}{2}} }

f_{p} = f_{m}                                     \Delta p_{p} = h_{fp}. \gamma _{p}
\left ( \begin{matrix} V_{p} \\ h_{fp} \\ \Delta p_{p} \\ f_{p} \end{matrix} \right ) : = Find ( V_{p}, h_{fp},\Delta p_{p}, f_{p})

V_{p} = 7.857 \frac{ft}{s}                                     h_{fp} = 15.766 ft                                     \Delta p_{p} = 1.172 \frac{lb}{ft^{2}}                                     f_{p}: = 0.038

Furthermore, the Euler number, E remains a constant between the model and the prototype as follows:

E_{m}: = \frac{\rho _{m}. V^{2}_{m}}{\Delta p_{m}} = 0.122                                     E_{p}: = \frac{\rho _{p}. V^{2}_{p}}{\Delta p_{p}} = 0.122

Therefore, although the similarity requirements regarding the independent π term, \varepsilon /D ((\varepsilon /D)_{p} = (\varepsilon /D)_{m} = 0.01) and the dependent π term, E (“pressure model”) ( E_{p} = E_{m} = 0.122) are theoretically satisfied, the dependent π term (i.e., the friction factor, f ) will actually/practically remain a constant between the model and its prototype ( f_{p} = f_{m} = 0.038) only if it is practical to attain/maintain the model velocity, pressure, fluid, scale, and cost. Furthermore, because the friction factor, f is independent of R for turbulent flow, R does not need to remain a constant between the model and the prototype as follows:

R_{m} = 2.833 \times 10^{6}                                     R_{p} : = \frac{\rho _{p} . V_{p}. D_{p}}{\mu _{p}} = 1.1448 \times 10^{5}

 

 

Table A.2
Physical Properties for Water at Standard Sea-Level Atmospheric Pressure as a Function of Temperature
Temperature
(θ)
^{\circ } F
Density
(ρ)
slug/ft^{3}
Specific
Weight
(γ)
Ib/ft^{3}
Absolute
(Dynamic)
Viscosity
(μ)
10^{-6} Ib-sec/ft^{3}
Kinematic
Viscosity
(ν)
10^{-6} ft^{2}/sec
Surface
Tension
(σ)
lb=ft
Vapor
Pressure
(\rho _{\nu } )
psia
Bulk
Modulus
of Elasticity
(E_{\upsilon } )
psi
32 1.940 62.42 37.46 19.31 0.00518 0.0885 293,000
40 1.940 62.43 32.29 16.64 0.00514 0.1220 294,000
50 1.940 62.41 27.35 14.10 0.00509 0.1780 305,000
60 1.938 62.37 23.59 12.17 0.00504 0.2560 311,000
70 1.936 62.30 20.50 10.59 0.00498 0.3630 320,000
80 1.934 62.22 17.99 9.30 0.00492 0.5070 322,000
90 1.931 62.11 15.95 8.26 0.00486 0.6980 323,000
100 1.927 62.00 14.24 7.39 0.00480 0.9490 327,000
110 1.923 61.86 12.84 6.67 0.00473 1.2750 331,000
120 1.918 61.71 11.68 6.09 0.00467 1.6920 333,000
130 1.913 61.55 10.69 5.58 0.00460 2.2200 334,000
140 1.908 61.38 9.81 5.14 0.00454 2.8900 330,000
150 1.902 61.20 9.05 4.76 0.00447 3.7200 328,000
160 1.896 61.00 8.38 4.42 0.00441 4.7400 326,000
170 1.890 60.80 7.80 4.13 0.00434 5.9900 322,000
180 1.883 60.58 7.26 3.85 0.00427 7.5100 318,000
190 1.876 60.36 6.78 3.62 0.00420 9.3400 313,000
200 1.868 60.12 6.37 3.41 0.00413 11.5200 308,000
212 1.860 59.83 5.93 3.19 0.00404 14.6900 300,000
^{\circ } C kg/m^{3} KN/m^{3} N-sec/m^{2} 10^{-6} m^{2} /sec N/m KN/m^{2}  abs 10^{6} KN/m^{2}
0 999.8 9.805 0.001781 1.785 0.0756 0.611 2.02
5 1000.0 9.807 0.001518 1.519 0.0749 0.872 2.06
10 999.7 9.804 0.001307 1.306 0.0742 1.230 2.10
15 999.1 9.798 0.001139 1.139 0.0735 1.710 2.14
20 998.2 9.789 0.001002 1.003 0.0728 2.340 2.18
25 997.0 9.777 0.000890 0.893 0.0720 3.170 2.22
30 995.7 9.765 0.000798 0.800 0.0712 4.240 2.25
40 992.2 9.731 0.000653 0.658 0.0696 7.380 2.28
50 988.0 9.690 0.000547 0.553 0.0679 12.330 2.29
60 983.2 9.642 0.000466 0.474 0.0662 19.920 2.28
70 977.8 9.589 0.000404 0.413 0.0644 31.160 2.25
80 971.8 9.530 0.000354 0.364 0.0626 47.340 2.20
90 965.3 9.467 0.000315 0.326 0.0608 70.100 2.14
100 958.4 9.399 0.000282 0.294 0.0589 101.330 2.07

 

Table 11.1
Similitude Scale Ratios for Physical Quantities for a Pressure Model
Physical
Quantity
FLT
System
MLT
System
Primary Scale Ratios Secondary/Similitude Scale Ratios for
a Pressure Model
F_{r} = \frac{F_{p_{p}}}{F_{p_{m}}} =  \frac{F_{I_{p}}}{F_{I_{m}}} = constant \underbrace{\left[\left(\frac{\rho v^{2}}{\Delta p}  \right)_{p} \right] }_{E_{p}} = \underbrace{\left[\left(\frac{\rho v^{2}}{\Delta p} \right)_{m} \right] }_{E_{m}}
Geometrics
Length, L
L L L_{r} = \frac{L_{p}}{L_{m}}  L_{r} = \frac{L_{p}}{L_{m}} 
Area, A L^{2} L^{2} L_{r}^{2} = \frac{L_{p}^{2}}{L_{m}^{2}}  L_{r}^{2} = \frac{L_{p}^{2}}{L_{m}^{2}} 
Volume, V L^{3} L^{3} L_{r}^{3} = \frac{L_{p}^{3}}{L_{m}^{3}}  L_{r}^{3} = \frac{L_{p}^{3}}{L_{m}^{3}} 
Kinematics
Time, T
T T T_{r} = \frac{L_{r}}{v_{r}} T_{r} = \frac{L_{r}}{v_{r}} =  L_{r} \Delta p_{r}^{-1/2} \rho _{r}^{1/2}
Velocity, v LT^{-1} LT^{-1} v_{r} = \frac{v_{p}}{v_{m}}  v_{r} = \frac{v_{p}}{v_{m}}  = \frac{\left(\sqrt{\frac{\Delta p}{\rho } } \right)_{p} }{\left(\sqrt{\frac{\Delta p}{\rho } } \right)_{m} } = \Delta p_{r}^{1/2} \rho _{r}^{-1/2}
Acceleration, a LT^{-2} LT^{-2} a_{r} = \frac{L_{r}}{T_{r}^{2}} = \frac{v_{r}^{2}}{L_{r}}  a_{r} =  \frac{v_{r}^{2}}{L_{r}} = \Delta p_{r} \rho _{r}^{-1} L_{r}^{-1} 
Discharge, Q L^{3}T^{-1} L^{3}T^{-1} Q_{r} = v_{r}. L_{r}^{2} =   \Delta p_{r}^{1/2} \rho _{r}^{-1/2} L_{r}^{2}
Dynamics
Mass, M
FL^{-1}T^{2} M M_{r} = F_{r}a_{r}^{-1} =  \rho _{r} L_{r}^{3}
Force, F F MLT^{-2} F_{r} = \frac{F_{p_{p}}}{F_{p_{m}}} =  \frac{F_{I_{p}}}{F_{I_{m}}} F_{r} =  \Delta p_{r} L_{r}^{2} = \rho _{r} v^{2}_{r}  L_{r}^{2} 
Pressure, p FL^{-2} ML^{-1}T^{-2} p_{r} =  F_{r} L_{r}^{-2} = \Delta p_{r} = \rho _{r} v^{2}_{r}
Momentum, Mv
or Impulse, FT
FT MLT^{-1} F_{r} T_{r} =  \rho _{r}^{1/2} L_{r}^{3} \Delta p_{r}^{1/2}
Energy, E or
Work, W
FL ML^{2}T^{-2} W_{r} = F_{r} L_{r}=  \Delta p_{r} L_{r}^{3}
Power, P FLT^{-1} ML^{2}T^{-3} p_{r} =  W_{r} T_{r}^{-1} = \Delta p_{r}^{3/2} =  L^{2}_{r} \rho _{r}^{-1/2}

 

Table A.5
Physical Properties for Some Common Gases at Standard Sea-Level Atmospheric Pressure at Room Temperature (68^{\circ }F or 20^{\circ }C )
Gas
at 68^{\circ }F
Chemical
Formula
Molar Mass
(m)
slug=slug-
mol
Density
(ρ)
slug/ft^{3}
Absolute (Dynamic)
Viscosity
(μ)
10^{-6} Ib-sec/ft^{2}
Gas
Constant
(R)
ft-Ib/(slug-^{\circ }R )=ft^{2}/(sec^{2} -^{\circ }R )
Specific Heat Specific Heat
Ratio,
K=C_{\rho }/C_{\upsilon }
C_{\rho } C_{\upsilon }
ft-Ib/(slug-^{\circ }R )=ft^{2}/(sec^{2} -^{\circ }R )
Air 28.960 0.002310 0.376 1715 6000 4285 1.40
Carbon dioxide CO_{2} 44.010 0.003540 0.310 1123 5132 4009 1.28
Carbon monoxide CO 28.010 0.002260 0.380 1778 6218 4440 1.40
Helium He 4.003 0.000323 0.411 12,420 13,230 18,810 1.66
Hydrogen H_{2} 2.016 0.000162 0.189 24,680 86,390 61,710 1.40
Methane CH_{2} 16.040 0.001290 0.280 3100 13,400 10,300 1.30
Nitrogen N_{2} 28.020 0.002260 0.368 1773 6210 4437 1.40
Oxygen O_{2} 32.000 0.002580 0.418 1554 5437 3883 1.40
Water vapor H_{2}O 18.020 0.001450 0.212 2760 11,110 8350 1.33
at 20^{\circ } C kg/kg-mol kg/m^{3} 10^{-6} N-sec/m^{2} N-m/(kg-^{\circ}K )=m^{2} /(sec^{2}-^{\circ}K ) N-m/(kg-^{\circ}K )=m^{2} /(sec^{2}-^{\circ}K )
Air 28.960 1.2050 18.0 287 1003 716 1.40
Carbon dioxide CO_{2} 44.010 1.8400 14.8 188 858 670 1.28
Carbon monoxide CO 28.010 1.1600 18.2 297 1040 743 1.40
Helium He 4.003 0.1660 19.7 2077 5220 3143 1.66
Hydrogen H_{2} 2.016 0.0839 9.0 4120 14,450 10,330 1.40
Methane CH_{2} 16.040 0.6680 13.4 520 2250 1730 1.30
Nitrogen N_{2} 28.020 1.1600 17.6 297 1040 743 1.40
Oxygen O_{2} 32.000 1.3300 20.0 260 909 649 1.40
Water vapor H_{2}O 18.020 0.7470 10.1 462 1862 1400 1.33
8.1

Related Answered Questions