Air enters a compressor at ambient conditions, 15 psia, 540 R, and exits at 120 psia. If the isentropic compressor efficiency is 85%, what is the second-law efficiency of the compressor process?
Air enters a compressor at ambient conditions, 15 psia, 540 R, and exits at 120 psia. If the isentropic compressor efficiency is 85%, what is the second-law efficiency of the compressor process?
Ideal (isentropic, Eq.6.23)
\begin{aligned}& T _{2 s }=540(8)^{0.2857}=978.1 R \\&- w _{ s }=0.24(978.1-540)=105.14 Btu / lbm \\&- w =\frac{- w _{ s }}{\eta_{ s }}=\frac{105.14}{0.85}=123.7 Btu / lbm\end{aligned}Actual exit temperature
T _{2}= T _{1}+\frac{- W }{ C _{ P 0}}=540+\frac{123.7}{0.24}=1055 REq.6.16: s _{2}- s _{1}=0.24 \ln (1055 / 540)-(53.34 / 778) \ln 8=0.01817 Btu / lbm – R
Exergy, Eq.8.23
\psi_{2}-\psi_{1}=\left( h _{2}- h _{1}\right)- T _{0}\left( s _{2}- s _{1}\right)=123.7-537(0.01817)=113.94 Btu / lbm2nd law efficiency, Eq.8.32 or 8.34 (but for a compressor):
\eta_{ II }=\frac{\psi_{2}-\psi_{1}}{- w }=\frac{113.94}{123.7}= 0 . 9 2
……………………………………..
Eq.6.23 : \frac{T_{2}}{T_{1}}=\left(\frac{P_{2}}{P_{1}}\right)^{(k-1) / k}
Eq.6.16 : s_{2}-s_{1}=C_{p 0} \ln \frac{T_{2}}{T_{1}}-R \ln \frac{P_{2}}{P_{1}}
Eq.8.23 :
\psi_{i}-\psi_{e}=\left[\left(h_{\text {tot } i}-T_{0} s_{i}\right)-\left(h_{0}-T_{0} s_{0}+g Z_{0}\right)\right]-\left[\left(h_{\text {tot } e}-T_{0} s_{e}\right)-\left(h_{0}-T_{0} s_{0}+g Z_{0}\right)\right]=\left(h_{\text {tot } i}-T_{0} s_{i}\right)-\left(h_{\text {tot } e}-T_{0} s_{e}\right)
Eq.8.32 : \eta_{2nd law }=\frac{\dot{m}_{1}\left(\psi_{2}-\psi_{1}\right)}{\dot{m}_{3}\left(\psi_{3}-\psi_{4}\right)}
Eq.8.34 : \eta_{2 \text { nd law }}=\frac{\dot{\Phi}_{\text {wanted }}}{\dot{\Phi}_{\text {source }}}=\frac{\dot{\Phi}_{\text {source }}-\dot{I}_{ c.v }}{\dot{\Phi}_{\text {source }}}