Question 8.178E: Air enters a compressor at ambient conditions, 15 psia, 540 ...

Air enters a compressor at ambient conditions, 15 psia, 540 R, and exits at 120 psia. If the isentropic compressor efficiency is 85%, what is the second-law efficiency of the compressor process?

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Ideal (isentropic, Eq.6.23)

\begin{aligned}& T _{2 s }=540(8)^{0.2857}=978.1   R \\&- w _{ s }=0.24(978.1-540)=105.14   Btu / lbm \\&- w =\frac{- w _{ s }}{\eta_{ s }}=\frac{105.14}{0.85}=123.7   Btu / lbm\end{aligned}

Actual exit temperature

T _{2}= T _{1}+\frac{- W }{ C _{ P 0}}=540+\frac{123.7}{0.24}=1055   R

Eq.6.16:        s _{2}- s _{1}=0.24 \ln (1055 / 540)-(53.34 / 778) \ln 8=0.01817   Btu / lbm – R

Exergy, Eq.8.23

\psi_{2}-\psi_{1}=\left( h _{2}- h _{1}\right)- T _{0}\left( s _{2}- s _{1}\right)=123.7-537(0.01817)=113.94   Btu / lbm

2nd law efficiency, Eq.8.32 or 8.34 (but for a compressor):

\eta_{ II }=\frac{\psi_{2}-\psi_{1}}{- w }=\frac{113.94}{123.7}= 0 . 9 2

 

……………………………………..

Eq.6.23 : \frac{T_{2}}{T_{1}}=\left(\frac{P_{2}}{P_{1}}\right)^{(k-1) / k}

Eq.6.16 : s_{2}-s_{1}=C_{p 0} \ln \frac{T_{2}}{T_{1}}-R \ln \frac{P_{2}}{P_{1}}

Eq.8.23 :
\psi_{i}-\psi_{e}=\left[\left(h_{\text {tot } i}-T_{0} s_{i}\right)-\left(h_{0}-T_{0} s_{0}+g Z_{0}\right)\right]-\left[\left(h_{\text {tot } e}-T_{0} s_{e}\right)-\left(h_{0}-T_{0} s_{0}+g Z_{0}\right)\right]=\left(h_{\text {tot } i}-T_{0} s_{i}\right)-\left(h_{\text {tot } e}-T_{0} s_{e}\right)

Eq.8.32 :  \eta_{2nd  law }=\frac{\dot{m}_{1}\left(\psi_{2}-\psi_{1}\right)}{\dot{m}_{3}\left(\psi_{3}-\psi_{4}\right)}

Eq.8.34 :  \eta_{2 \text { nd law }}=\frac{\dot{\Phi}_{\text {wanted }}}{\dot{\Phi}_{\text {source }}}=\frac{\dot{\Phi}_{\text {source }}-\dot{I}_{ c.v }}{\dot{\Phi}_{\text {source }}}

 

1

Related Answered Questions