Question 7.231E: Air enters an insulated compressor at ambient conditions, 14...

Air enters an insulated compressor at ambient conditions, 14.7 lbf / in .^{2}, 70 F, at the rate of 0.1 lbm/s and exits at 400 F. The isentropic efficiency of the compressor is 70%. What is the exit pressure? How much power is required to drive the compressor?

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

C.V. Compressor:    P _{1}, T _{1}, T _{ e }(\text { real }), \eta_{ s  COMP } known, assume constant C _{ P 0}

Energy Eq.4.13 for real:          – w = C _{ P 0}\left( T _{ e }- T _{ i }\right)=0.24(400-70)=79.2   Btu / lbm

Ideal        – w _{ s }=- w \times \eta_{ s }=79.2 \times 0.7=55.4   Btu / lbm

Energy Eq.4.13 for ideal:

55.4= C _{ P 0}\left( T _{ es }- T _{ i }\right)=0.24\left( T _{ es }-530\right), \quad T _{ es }=761   R

Constant entropy for ideal as in Eq.6.23:

P_{e}=P_{i}\left(T_{e s} / T_{i}\right)^{\frac{k}{k-1}}=14.7(761 / 530)^{3.5}=52.1   lbf / in ^{2}

 

-\dot{ W }_{ REAL }=\dot{ m }(- w )=0.1 \times 79.2 \times 3600 / 2544= 1 1 . 2   hp

 

………………………………..

Eq.4.13 : q+h_{i}+\frac{ V _{i}^{2}}{2}+g Z_{i}=h_{e}+\frac{ V _{e}^{2}}{2}+g Z_{e}+w

Eq.6.23 : \frac{T_{2}}{T_{1}}=\left(\frac{P_{2}}{P_{1}}\right)^{(k-1) / k}

 

1
2

Related Answered Questions