Question 8.177E: Air flows into a heat engine at ambient conditions 14.7 lbf/...

Air flows into a heat engine at ambient conditions 14.7 lbf / in .^{2}, 540 R, as shown in Fig. P8.111. Energy is supplied as 540 Btu per lbm air from a 2700 R source and in some part of the process a heat transfer loss of 135 Btu per lbm air happens at 1350 R. The air leaves the engine at 14.7 lbf / in .^{2}, 1440 R. Find the first- and the second-law efficiencies.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

C.V. Engine out to reservoirs

h _{ i }+ q _{ H }= q _{ L }+ h _{ e }+ w

Table F.5:        h _{ i }=129.18   Btu / lbm ,        s _{ Ti }^{ o }=1.63979   Btu / lbm  R

 

h _{ e }=353.483   Btu / lbm ,         s _{ Te }^{ o }=1.88243   Btu / lbm  R

 

w _{ ac }=129.18+540-135-353.483=180.7   Btu / lbm

 

\eta_{ TH }= w / q _{ H }=180.7 / 540= 0 . 3 3 5

 

For second law efficiency also a q to/from ambient

s _{ i }+\left( q _{ H } / T _{ H }\right)+\left( q _{0} / T _{0}\right)=\left( q _{\text {loss }} / T _{ m }\right)+ s _{ e }

 

\begin{aligned}q _{0} &= T _{0}\left[ s _{ e }- s _{ i }+\left( q _{\text {loss }} / T _{ m }\right)-\left( q _{ H } / T _{ H }\right)\right] \\&=540\left(1.88243-1.63979+\frac{135}{1350}-\frac{540}{2700}\right)=77.02   Btu / lbm\end{aligned}

 

w _{ rev }= h _{ i }- h _{ e }+ q _{ H }- q _{ loss }+ q _{0}= w _{ ac }+ q _{0}=257.7   Btu / lbm

 

\eta_{ II }= w _{ ac } / w _{ rev }=180.7 / 257.7= 0 . 7 0

 

 

F.5.1
F.5.2

Related Answered Questions