Alternative Fugacity Calculation
Use other data in the superheated vapor steam tables to calculate the fugacity of steam at 300°C and 8 MPa, and check the answer obtained in the previous illustration.
Alternative Fugacity Calculation
Use other data in the superheated vapor steam tables to calculate the fugacity of steam at 300°C and 8 MPa, and check the answer obtained in the previous illustration.
At 300°C and 0.01 MPa we have from the steam tables \hat{H} = 3076.5 kJ/kg and \hat{S} = 9.2813 kJ/(kg K).
Therefore,
\begin{aligned}\hat{G}\left(300^{\circ} \mathrm{C}, 0.01 \mathrm{MPa}\right) &=\hat{H}-T \hat{S} \\\\&=3076.5-573.15 \times 9.2813=-2243.1 \mathrm{~kJ} / \mathrm{kg}\end{aligned}
and G(300°C, 0.01 MPa) = -2243.1 J/g × 18.015 g/mol = -40409 J/mol. Since the pressure is so low (0.01 MPa ) and well away from the saturation pressure of steam at 300°C (which is 8.581 MPa ), we assume steam is an ideal gas at these conditions. Then using Eq. 7.4-3 for an ideal gas, we have
\underline{G}\left(T_{1}, P_{2}\right)-\underline{G}\left(T_{1}, P_{1}\right)=\int_{P_{1}}^{P_{2}} \underline{V} d P (7.4.3)
\begin{aligned}\underline{G}^{\mathrm{IG}}\left(300^{\circ} \mathrm{C}, 8 \mathrm{MPa}\right) &=\underline{G}^{\mathrm{IG}}\left(300^{\circ} \mathrm{C}, 0.01 \mathrm{MPa}\right)+\int_{0.01 \mathrm{MPa}}^{8 \mathrm{MPa}} \underline{V}^{\mathrm{IG}} d P \\\\&=-40409+\int_{0.01 \mathrm{MPa}}^{8 \mathrm{MPa}} \frac{R T}{P} d P \\\\&=-40409+R T \ln \frac{8}{0.01} \\\\&=-40409+8.134 \times 573.15 \ln 800 \\\\&=-8555.7 \frac{\mathrm{J}}{\mathrm{mol}}\end{aligned}
For real steam at 300°C and 8 MPa, we have, from the steam tables, \hat{H} = 2785.0 kJ/kg and \hat{S} = 5.7906 kJ/(kg K), so that
\hat{G}\left(300^{\circ} \mathrm{C}, 8 \mathrm{MPa}\right)=2785.0-573.15 \times 5.7906=-533.88 \frac{\mathrm{kJ}}{\mathrm{kg}}
and
\underline{G}\left(300^{\circ} \mathrm{C}, 8 \mathrm{MPa}\right)=-9617.9 \frac{\mathrm{J}}{\mathrm{mol}}
Now using Eq. 7.4-6a in the form
f(T, P)=P \exp \left[\frac{\underline{G}(T, P)-\underline{G}^{\mathrm{IG}}(T, P)}{R T}\right]
results in
\begin{aligned}f\left(300^{\circ} \mathrm{C}, 8 \mathrm{MPa}\right) &=8 \mathrm{MPa} \exp \left[\frac{-9617.9-(-8555.7)}{8.314 \times 573.15}\right] \\\\&=8 \mathrm{MPa} \exp [-0.2229] \\\\&=6.402 \mathrm{MPa}\end{aligned}
which is in excellent agreement with the results obtained in the previous illustration.