Question 7.4.2: Alternative Fugacity Calculation Use other data in the super...

Alternative Fugacity Calculation
Use other data in the superheated vapor steam tables to calculate the fugacity of steam at 300°C and 8 MPa, and check the answer obtained in the previous illustration.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

At 300°C and 0.01 MPa we have from the steam tables \hat{H} = 3076.5 kJ/kg and \hat{S} = 9.2813 kJ/(kg K).

 

Therefore,

 

\begin{aligned}\hat{G}\left(300^{\circ} \mathrm{C}, 0.01 \mathrm{MPa}\right) &=\hat{H}-T \hat{S} \\\\&=3076.5-573.15 \times 9.2813=-2243.1 \mathrm{~kJ} / \mathrm{kg}\end{aligned}

 

and G(300°C, 0.01 MPa) = -2243.1 J/g × 18.015 g/mol = -40409 J/mol. Since the pressure is so low (0.01 MPa ) and well away from the saturation pressure of steam at 300°C (which is 8.581 MPa ), we assume steam is an ideal gas at these conditions. Then using Eq. 7.4-3 for an ideal gas, we have

 

\underline{G}\left(T_{1}, P_{2}\right)-\underline{G}\left(T_{1}, P_{1}\right)=\int_{P_{1}}^{P_{2}} \underline{V} d P                           (7.4.3)

 

 

\begin{aligned}\underline{G}^{\mathrm{IG}}\left(300^{\circ} \mathrm{C}, 8 \mathrm{MPa}\right) &=\underline{G}^{\mathrm{IG}}\left(300^{\circ} \mathrm{C}, 0.01 \mathrm{MPa}\right)+\int_{0.01 \mathrm{MPa}}^{8 \mathrm{MPa}} \underline{V}^{\mathrm{IG}} d P \\\\&=-40409+\int_{0.01 \mathrm{MPa}}^{8 \mathrm{MPa}} \frac{R T}{P} d P \\\\&=-40409+R T \ln \frac{8}{0.01} \\\\&=-40409+8.134 \times 573.15 \ln 800 \\\\&=-8555.7 \frac{\mathrm{J}}{\mathrm{mol}}\end{aligned}

 

 

For real steam at 300°C and 8 MPa, we have, from the steam tables, \hat{H} = 2785.0 kJ/kg and \hat{S} = 5.7906 kJ/(kg K), so that

 

\hat{G}\left(300^{\circ} \mathrm{C}, 8 \mathrm{MPa}\right)=2785.0-573.15 \times 5.7906=-533.88 \frac{\mathrm{kJ}}{\mathrm{kg}}

 

and

 

\underline{G}\left(300^{\circ} \mathrm{C}, 8 \mathrm{MPa}\right)=-9617.9 \frac{\mathrm{J}}{\mathrm{mol}}

 

Now using Eq. 7.4-6a in the form

 

f(T, P)=P \exp \left[\frac{\underline{G}(T, P)-\underline{G}^{\mathrm{IG}}(T, P)}{R T}\right]

 

results in

 

\begin{aligned}f\left(300^{\circ} \mathrm{C}, 8 \mathrm{MPa}\right) &=8 \mathrm{MPa} \exp \left[\frac{-9617.9-(-8555.7)}{8.314 \times 573.15}\right] \\\\&=8 \mathrm{MPa} \exp [-0.2229] \\\\&=6.402 \mathrm{MPa}\end{aligned}

 

which is in excellent agreement with the results obtained in the previous illustration.

Related Answered Questions