Although the p that appears in Eq. (7.66) is actually a Lagrange multiplier that enforces the incompressibility constraint, similar to its role in Eq. (6.76) for nonlinear solids, its value is equivalent to the hydrostatic pressure for an incompressible Newtonian fluid. Prove this. \sigma _{xx}=-p+2\mu \frac{\partial\nu _{x}}{\partial x},\sigma _{xy}=\mu \left(\frac{\partial\nu _{y}}{\partial x} +\frac{\partial\nu _{x}}{\partial y} \right)=\sigma _{yx}, \sigma _{yy}=-p+2\mu \frac{\partial\nu _{y}}{\partial y},\sigma _{xz}=\mu \left(\frac{\partial\nu _{x}}{\partial z} +\frac{\partial\nu _{z}}{\partial x} \right)=\sigma _{zx}, \sigma _{zz}=-p+2\mu \frac{\partial\nu _{z}}{\partial z},\sigma _{yz}=\mu \left(\frac{\partial\nu _{y}}{\partial z} +\frac{\partial\nu _{z}}{\partial y} \right)=\sigma _{zy}, (7.66) \sigma _{z\theta }=2\mu \left[\frac{1}{2}\left(\frac{1}{r}\frac{\partial\nu _{z}}{\partial \theta }+\frac{\partial\nu _{\theta }}{\partial z} \right) \right]. (6.76)