Question 4.36: An electron is at rest in an oscillating magnetic field B = ...

An electron is at rest in an oscillating magnetic field

B =B_{0} \cos (\omega t) \hat{k} ,

where B_{0} and ω are constants.

(a) Construct the Hamiltonian matrix for this system.

(b) The electron starts out (at t = 0 in the spin-up state with respect to the x axis (that is: \chi(0)=\chi_{+}^{(x)} ). Determine χ(t) at any subsequent time.

Beware: This is a time-dependent Hamiltonian, so you cannot get χ(t) in the usual way from stationary states. Fortunately, in this case you can solve the time-dependent Schrödinger equation (Equation 4.162) directly.

i \hbar \frac{\partial \chi}{\partial t}= H _{\chi}       (4.162).

(c) Find the probability of getting -\hbar / 2 if you measure S_x .  Answer:

\sin ^{2}\left(\frac{\gamma B_{0}}{2 \omega} \sin (\omega t)\right) .

(d) What is the minimum field ( B_{0} ) required to force a complete flip in S_x ?

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a)

H =-\gamma B \cdot S =-\gamma B_{0} \cos \omega t S _{z}=-\frac{\gamma B_{0} \hbar}{2} \cos \omega t\left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right) .

(b)

\chi(t)=\left(\begin{array}{l} \alpha(t) \\ \beta(t) \end{array}\right), \text { with } \alpha(0)=\beta(0)=\frac{1}{\sqrt{2}} .

i \hbar \frac{\partial \chi}{\partial t}=i \hbar\left(\begin{array}{c} \dot{\alpha} \\ \dot{\beta} \end{array}\right)= H \chi=-\frac{\gamma B_{0} \hbar}{2} \cos \omega t\left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right)\left(\begin{array}{l} \alpha \\ \beta \end{array}\right)=-\frac{\gamma B_{0} \hbar}{2} \cos \omega t\left(\begin{array}{c} \alpha \\ -\beta<br /> \end{array}\right) .

\dot{\alpha}=i\left(\frac{\gamma B_{0}}{2}\right) \cos \omega t \alpha \Rightarrow \frac{d \alpha}{\alpha}=i\left(\frac{\gamma B_{0}}{2}\right) \cos \omega t d t \Rightarrow \ln \alpha=\frac{i \gamma B_{0}}{2} \frac{\sin \omega t}{\omega}+\text { constant } .

\alpha(t)=A e^{i\left(\gamma B_{0} / 2 \omega\right) \sin \omega t} ; \quad \alpha(0)=A=\frac{1}{\sqrt{2}}, \quad \text { so } \alpha(t)=\frac{1}{\sqrt{2}} e^{i\left(\gamma B_{0} / 2 \omega\right) \sin \omega t} .

\dot{\beta}=-i\left(\frac{\gamma B_{0}}{2}\right) \cos \omega t \beta \Rightarrow \beta(t)=\frac{1}{\sqrt{2}} e^{-i\left(\gamma B_{0} / 2 \omega\right) \sin \omega t} . \quad \chi(t)=\frac{1}{\sqrt{2}}\left(\begin{array}{c} e^{i\left(\gamma B_{0} / 2 \omega\right) \sin \omega t} \\ \left.e^{-i\left(\gamma B_{0} / 2 \omega\right) \sin \omega t}\right) \end{array}\right.

(c)

c_{-}^{(x)}=\chi_{-}^{(x) \dagger} \chi=\frac{1}{2}(1-1)\left(\begin{array}{c} e^{i\left(\gamma B_{0} / 2 \omega\right) \sin \omega t} \\ e^{-i\left(\gamma B_{0} / 2 \omega\right) \sin \omega t} \end{array}\right)=\frac{1}{2}\left[e^{i\left(\gamma B_{0} / 2 \omega\right) \sin \omega t}-e^{-i\left(\gamma B_{0} / 2 \omega\right) \sin \omega t}\right] .

=i \sin \left[\frac{\gamma B_{0}}{2 \omega} \sin \omega t\right] . \quad P_{-}^{(x)}(t)=\left|c_{-}^{(x)}\right|^{2}=\sin ^{2}\left[\frac{\gamma B_{0}}{2 \omega} \sin \omega t\right] .

(d) The argument of \sin^2 must reach \pi / 2(\text { so } P=1) \Rightarrow \frac{\gamma B_{0}}{2 \omega}=\frac{\pi}{2}, \text { or } B_{0}=\frac{\pi \omega}{\gamma} .

Related Answered Questions