Question 9.89: An industrial load is modeled as a series combination of a c...

An industrial load is modeled as a series combination of a capacitance and a resistance as shown in Fig. 9.89. Calculate the value of an inductance L across the series combination so that the net impedance is resistive at a frequency of 50 kHz.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.
\begin{array}{l}{Z}_{\text {in }}=\mathrm{j} \omega \mathrm{L} \|\left(\mathrm{R}+\frac{1}{\mathrm{j} \omega \mathrm{C}}\right) \\\\{Z}_{\text {in }}=\frac{\mathrm{j} \omega \mathrm{L}\left(\mathrm{R}+\frac{1}{\mathrm{j} \omega \mathrm{C}}\right)}{\mathrm{R}+\mathrm{j} \omega \mathrm{L}+\frac{1}{\mathrm{j} \omega \mathrm{C}}}=\frac{\frac{\mathrm{L}}{\mathrm{C}}+\mathrm{j} \omega \mathrm{L} \mathrm{R}}{\mathrm{R}+\mathrm{j}\left(\omega \mathrm{L}-\frac{1}{\omega \mathrm{C}}\right)} \\\\{Z}_{\text {in }}=\frac{\left(\frac{\mathrm{L}}{\mathrm{C}}+\mathrm{j} \omega \mathrm{L} \mathrm{R}\right)\left(\mathrm{R}-\mathrm{j}\left(\omega \mathrm{L}-\frac{1}{\omega \mathrm{C}}\right)\right)}{\mathrm{R}^{2}+\left(\omega \mathrm{L}-\frac{1}{\omega \mathrm{C}}\right)^{2}}\\\end{array}

To have a resistive impedance, \operatorname{Im}\left({Z}_{\text {in }}\right)=0. Hence,

\begin{array}{l}\omega \mathrm{L} \mathrm{R}^{2}-\left(\frac{\mathrm{L}}{\mathrm{C}}\right)\left(\omega \mathrm{L}-\frac{1}{\omega \mathrm{C}}\right)=0 \\\\\omega \mathrm{R}^{2} \mathrm{C}=\omega \mathrm{L}-\frac{1}{\omega \mathrm{C}} \\\\\omega^{2} \mathrm{R}^{2} \mathrm{C}^{2}=\omega^{2} \mathrm{LC}-1 \\\\\mathrm{L}=\frac{\omega^{2} \mathrm{R}^{2} \mathrm{C}^{2}+1}{\omega^{2} \mathrm{C}}\\\end{array}

Now we can solve for L.

\mathrm{L}=\mathrm{R}^{2} \mathrm{C}+1 /\left(\omega^{2} \mathrm{C}\right)\\\\ \begin{array}{l}=\left(200^{2}\right)\left(50 \times 10^{-9}\right)+1 /\left((2 \pi \times 50,000)^{2}\left(50 \times 10^{-9}\right)\right. \\\\=2 \times 10^{-3}+0.2026 \times 10^{-3}={2.203 \mathrm{mH}}\\\end{array}

Checking, converting the series resistor and capacitor into a parallel combination, gives 220.3Ω in parallel with -j691.9Ω. The value of the parallel inductance is ωL =2πx50,000×2.203x10^{–3} = 692.1Ω which we need to have if we are to cancel the effect of the capacitance. The answer checks.

Related Answered Questions