Question 3.5: An infinitely long rectangular metal pipe (sides a and b) is...

An infinitely long rectangular metal pipe (sides a and b) is grounded, but one end, at x = 0, is maintained at a specified potential V_{0}(y, z),as indicated in Fig. 3.22. Find the potential inside the pipe.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

This is a genuinely three-dimensional problem,

\frac{\delta ^{2}V}{\delta x^{2}}+ \frac{\delta ^{2}V}{\delta y^{2}}+\frac{\delta ^{2}V}{\delta z^{2}}=0,       (3.43)

subject to the boundary conditions

\begin{cases}(i) V = 0\quad when\quad y = 0,\\(ii) V = 0\quad when\quad y = a,\\(iii) V = 0\quad   when\quad     z = 0,\\(iv) V = 0 \quad  when\quad   z = b,\\(v) V → 0 as\quad x →\infty ,\\(vi) V = V_{0}(y, z)   when\quad    x = 0.\end{cases}           (3.44)

 

As always, we look for solutions that are products:

 

V(x, y, z) = X(x)Y (y)Z(z).          (3.45)

 

Putting this into Eq. 3.43, and dividing by V, we find

\frac{1}{X}\frac{d^{2}X}{dx^{2}}+\frac{1}{Y}\frac{d^{2}Y}{dy^{2}}+ \frac{1}{Z}\frac{d^{2}Z}{dy^{2}}=0

It follows that

\frac{1}{X}\frac{d^{2}X}{dx^{2}}=C_{1},\frac{1}{Y}\frac{d^{2}Y}{dy^{2}}=C_{2}, \frac{1}{Z}\frac{d^{2}Z}{dy^{2}} =C_{3}, with C_{1}+C{2}+C_{3}=0

Our previous experience (Ex. 3.3) suggests that C_{1} must be positive,latex]C_{2}[/latex] and C_{3} negative. Setting C_{2}=-k^{2} and C_{3}=-l^{2}, we have C_{1}=k^{2}+l^{2}, and hence

\frac{1}{X}\frac{d^{2}X}{dx^{2}}=(k^{2}+l^{2})X,\frac{1}{Y}\frac{d^{2}Y}{dy^{2}}=-k^{2}Y, \frac{1}{Z}\frac{d^{2}Z}{dy^{2}} =-l^{2}Z.      (3.46)

Once again, separation of variables has turned a partial differential equation into ordinary differential equations. The solutions are

X(x)=Ae^{\sqrt{k2+l2}x}+ Be^{\sqrt{−k2+l2} x} ,\\Y (y) = C \sin ky + D \cos ky,\\Z(z) = E \sin lz + F \cos lz.

Boundary condition (v) implies A = 0, (i) gives D = 0, and (iii) yields F = 0, whereas (ii) and (iv) require that k = nπ/a and l = mπ/b, where n and m are positive integers. Combining the remaining constants, we are left with

V(x, y, z)=Ce^{−π\sqrt{(n/a)^{2}+(m/b)^{2}} x} \sin(nπy/a) \sin(mπz/b).       (3.47)

This solution meets all the boundary conditions except (vi). It contains two unspecified integers (n and m), and the most general linear combination is a double sum:

V(x, y, z)=\sum\limits_{n=1}^{\infty }{}\sum\limits_{m=1}^{\infty }{} C_{n.m}e^{−π\sqrt{(n/a)^{2}+(m/b)^{2}} x} \sin(nπy/a) \sin(mπz/b).      (3.48)

We hope to fit the remaining boundary condition,

V(0, y, z)=\sum\limits_{n=1}^{\infty }{}\sum\limits_{m=1}^{\infty }{} C_{n.m} \sin(nπy/a) \sin(mπz/b)=V_{0}(y,z).     (3.49)

by appropriate choice of the coefficients C_{n,m}. To determine these constants, we multiply by \sin(\acute{n}πy/a) \sin(\acute {m}πz/b), where \acute {n} and \acute {m} are arbitrary positive integers, and integrate:

\sum\limits_{n=1}^{\infty }{}\sum\limits_{m=1}^{\infty }{} C_{n.m} \int_{0}^{a}{ \sin(nπy/a)\sin(\acute{n}πy/a)dy} \int_{0}^{b}{ \sin(mπz/b)\sin(\acute{m}πz/b)dz}\\=\int_{0}^{a}{} \int_{0}^{b}{}V_{0}(y,z)\sin (\acute{n}\pi y/a) \sin (\acute{m}\pi z/b)dydz .

Quoting Eq. 3.33, the left side is (ab/4)C_{n^′,m^′ }, so

\int_{0}^{a}{sin(n\pi y/a)sin(n^\prime \pi y/a)} \begin{cases} 0, & if \quad n^\prime \neq n \\ \frac{a}{2} & n^\prime = n \end{cases}         (3.33)

 

C_{n,m}=\frac{4}{ab}\int_{0}^{a}{\int_{0}^{b}{V_0(y,z)sin(n\pi y/a)sin(m\pi y/a)dydz} }              (3.50)

Equation 3.48, with the coefficients given by Eq. 3.50, is the solution to our problem.
For instance, if the end of the tube is a conductor at constant potential V_0 ,

C_{n,m}=\frac{4V_0}{ab}\int_{0}^{a}{sin(n\pi y/a)dy} \int_{0}^{b}{sin(m\pi y/a)dz}

 

=\begin{cases} 0, & if \quad n \quad or\quad m \quad is \quad even \\ \frac{16V_0}{\pi ^2nm} & n \quad or\quad m \quad is \quad odd \end{cases}           (3.51)

In this case

V(x,y,z)=\frac{16V_0}{\pi ^2nm} \sum\limits_{n,m=1,3,5,…}^{\infty }{\frac{1}{nm}e^{-\pi \sqrt{(n/a)^2+(m/b)^2} x }sin(n\pi y/a)sin(m\pi z/b) }         (3.52)

Notice that the successive terms decrease rapidly; a reasonable approximation would be obtained by keeping only the first few.

Related Answered Questions