Question 12.118: An uninsulated compressor delivers ethylene, C2H4, to a pipe...

An uninsulated compressor delivers ethylene, C _{2} H _{4}, to a pipe, D = 10 cm, at 10.24 MPa, 94°C and velocity 30 m/s. The ethylene enters the compressor at 6.4 MPa, 20.5°C and the work input required is 300 kJ/kg. Find the mass flow rate, the total heat transfer and entropy generation, assuming the surroundings are at 25°C.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.
T _{ ri }=\frac{293.7}{282.4}=1.040, P _{ ri }=\frac{6.4}{5.04}=1.270

From D.2 and D.3,

\begin{aligned}&\left( h _{ i }^{*}- h _{ i }\right)=0.29637 \times 282.4 \times 2.65=221.8   kJ / kg \\&\left( s _{ i }^{*}- s _{ i }\right)=0.29637 \times 2.08=0.6164   kJ / kg  K\end{aligned}

 

T _{ re }=\frac{367.2}{282.4}=1.30, P _{ re }=\frac{10.24}{5.04}=2.032 \Rightarrow    From D.1:        Z _{ e } = 0.69

v _{ e }=\frac{ Z _{ e } RT _{ e }}{ P _{ e }}=\frac{0.69 \times 0.29637 \times 367.2}{10240}=0.0073   m ^{3} / kg

 

A_{e}=\frac{\pi}{4} D_{e}^{2}=0.00785   m ^{2} \Rightarrow \quad \dot{m}=\frac{A_{e} V_{e}}{v_{e}}=\frac{0.00785 \times 30}{0.0073}=32.26   kg / s

 

From D.2 and D.3,

\begin{aligned}&\left( h _{ e }^{*} -h _{ e }\right)=0.29637 \times 282.4 \times 1.6=133.9   kJ / kg \\&\left( s _{ e }^{*}- s _{ e }\right)=0.29637 \times 0.90=0.2667   kJ / kg  K \\&\left( h _{ e }^{*}- h _{ i }^{*}\right)=1.5482(367.2-293.7)=113.8\end{aligned}

 

\begin{aligned}&\left( s _{ e }^{*}- s _{ i }^{*}\right)=1.5482 \ln \frac{367.2}{293.7}-0.29637 \ln \frac{10.24}{6.4}=0.2065 \\&\left( h _{ e }- h _{ i }\right)=-133.9+113.8+221.8=201.7   kJ / kg \\&\left( s _{ e }- s _{ i }\right)=-0.2667+0.2065+0.6164=0.5562   kJ / kg  K\end{aligned}

Energy Eq.:

\begin{aligned}& q =\left( h _{ e }- h _{ i }\right)+ KE _{ e }+ w =201.7+\frac{30^{2}}{2 \times 1000}-300=-97.9   kJ / kg \\&\dot{ Q }_{ cv }=\dot{ m } q =32.26(-97.9)=- 3 1 5 8   k W \\&\dot{ S }_{ gen }=-\frac{\dot{ Q }_{ cv }}{ T _{ o }}+\dot{ m }\left( s _{ e }- s _{ i }\right)=+\frac{3158}{298.2}+32.26(0.5562)= 2 8 . 5 3   k W / K\end{aligned}

 

D.1
D.2
D.3

Related Answered Questions