Question 9.17: Analyze the case of polarization perpendicular to the plane ...

Analyze the case of polarization perpendicular to the plane of incidence (i.e. electric fields in the y direction, in Fig. 9.15). Impose the boundary conditions (Eq. 9.101), and obtain the Fresnel equations for \tilde{E}_{0_{R}} \text { and } \tilde{E}_{0_{T}} . Sketch \left(\tilde{E}_{0_{R}} / \tilde{E}_{0_{I}}\right) \text { and }\left(\tilde{E}_{0_{T}} / \tilde{E}_{0_{I}}\right) as functions of \theta_{I} , for the case \beta=n_{2} / n_{1}=1.5 . (Note that for this \beta the reflected wave is always 180^{\circ} out of phase.) Show that there is no Brewster’s angle for any n_{1} \text { and } n_{2}: \tilde{E}_{0_{R}} is never zero (unless, of course, n_{1}=n_{2} and \mu_{1}=\mu_{2} , in which case the two media are optically indistinguishable). Confirm that your Fresnel equations reduce to the proper forms at normal incidence. Compute the reflection and transmission coefficients, and check that they add up to 1. 

\left. \begin{matrix} \text { (i) } \epsilon_{1}\left(\tilde{ E }_{0_{I}}+\tilde{ E }_{0_{R}}\right)_{z}=\epsilon_{2}\left(\tilde{ E }_{0_{T}}\right)_{z} \\ \text { (ii) }\left(\tilde{ B }_{0_{I}}+\tilde{ B }_{0_{R}}\right)_{z}=\left(\tilde{ B }_{0_{T}}\right)_{z} \\ \text { (iii) }\left(\tilde{ E }_{0_{I}}+\tilde{ E }_{0_{R}}\right)_{x, y}=\left(\tilde{ E }_{0_{T}}\right)_{x, y} \\ \text { (iv) } \frac{1}{\mu_{1}}\left(\tilde{ B }_{0_{1}}+\tilde{ B }_{0_{R}}\right)_{x, y}=\frac{1}{\mu_{2}}\left(\tilde{ B }_{0_{T}}\right)_{x, y} \end{matrix} \right\}                         (9.101)

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.
\left\{\begin{array}{l}\tilde{ E }_{I}=\tilde{E}_{0_{I}} e^{i\left( k _{I} \cdot r -\omega t\right)} \hat{ y } \\\tilde{ B }_{I}=\frac{1}{v_{1}} \tilde{E}_{0_{I}} e^{i\left( k _{I} \cdot r -\omega t\right)}\left(-\cos \theta_{1} \hat{ x }+\sin \theta_{1} \hat{ z }\right)\end{array}\right\}

 

\left\{\begin{array}{l}\tilde{ E }_{R}=\tilde{E}_{0_{R}} e^{i\left( k _{R} \cdot r -\omega t\right)} \hat{ y } \\\tilde{ B }_{R}=\frac{1}{v_{1}} \tilde{E}_{0_{R}} e^{i\left( k _{R} \cdot r -\omega t\right)}\left(\cos \theta_{1} \hat{ x }+\sin \theta_{1} \hat{ z }\right)\end{array}\right\}

 

\left\{\begin{array}{l}\tilde{ E }_{T}=\tilde{E}_{0_{T}} e^{i\left( k _{T} \cdot r -\omega t\right)} \hat{ y } \\\tilde{ B }_{T}=\frac{1}{v_{2}} \tilde{E}_{0_{T}} e^{i\left( k _{T} \cdot r -\omega t\right)}\left(-\cos \theta_{2} \hat{ x }+\sin \theta_{2} \hat{ z }\right)\end{array}\right\}

Boundary conditions: \begin{cases}\text { (i) } \epsilon_{1} E_{1}^{\perp}=\epsilon_{2} E_{2}^{\perp}, & \text { (iii) } E _{1}^{\|}= E _{2}^{\|} \\ \text {(ii) } B_{1}^{\perp}=B_{2}^{\perp}, & \text { (iv) } \frac{1}{\mu_{1}} B _{1}^{\|}=\frac{1}{\mu_{2}} B _{2}^{\|}\end{cases}

Law of refraction: \frac{\sin \theta_{2}}{\sin \theta_{1}}=\frac{v_{2}}{v_{1}} .\left[\text { Note: } k _{I} \cdot r -\omega t= k _{R} \cdot r -\omega t= k _{T} \cdot r -\omega t, \text { at } z=0\right. , so we can drop all exponential factors in applying the boundary conditions.]

Boundary condition (i): 0 = 0 (trivial). Boundary condition \text { (iii): } \tilde{E}_{0_{I}}+\tilde{E}_{0_{R}}=\tilde{E}_{0_{T}}.

Boundary condition \text { (ii): } \frac{1}{v_{1}} \tilde{E}_{0_{I}} \sin \theta_{1}+\frac{1}{v_{1}} \tilde{E}_{0_{R}} \sin \theta_{1}=\frac{1}{v_{2}} \tilde{E}_{0_{T}} \sin \theta_{2} \Rightarrow \tilde{E}_{0_{I}}+\tilde{E}_{0_{R}}=\left(\frac{v_{1} \sin \theta_{2}}{v_{2} \sin \theta_{1}}\right) \tilde{E}_{0_{T}}.

But the term in parentheses is 1, by the law of refraction, so this is the same as (iii)

Boundary condition  ( iv ): \frac{1}{\mu_{1}}\left[\frac{1}{v_{1}} \tilde{E}_{0_{I}}\left(-\cos \theta_{1}\right)+\frac{1}{v_{1}} \tilde{E}_{0_{R}} \cos \theta_{1}\right]=\frac{1}{\mu_{2} v_{2}} \tilde{E}_{0_{T}}\left(-\cos \theta_{2}\right) \Rightarrow \tilde{E}_{0_{I}}-\tilde{E}_{0_{R}}=\left(\frac{\mu_{1} v_{1} \cos \theta_{2}}{\mu_{2} v_{2} \cos \theta_{1}}\right) \tilde{E}_{0_{T}} . Let  \alpha \equiv \frac{\cos \theta_{2}}{\cos \theta_{1}} ; \beta \equiv \frac{\mu_{1} v_{1}}{\mu_{2} v_{2}} . Then \tilde{E}_{0_{I}}-\tilde{E}_{0_{R}}=\alpha \beta \tilde{E}_{0_{T}}.

Solving for  \tilde{E}_{0_{R}} \text { and } \tilde{E}_{0_{T}}: 2 \tilde{E}_{0_{I}}=(1+\alpha \beta) \tilde{E}_{0_{T}} \Rightarrow \tilde{E}_{0_{T}}=\left(\frac{2}{1+\alpha \beta}\right) \tilde{E}_{0_{I}};

\tilde{E}_{0_{R}}=\tilde{E}_{0_{T}}-\tilde{E}_{0_{I}}=\left(\frac{2}{1+\alpha \beta}-\frac{1+\alpha \beta}{1+\alpha \beta}\right) \tilde{E}_{0_{I}} \Rightarrow \tilde{E}_{0_{R}}=\left(\frac{1-\alpha \beta}{1+\alpha \beta}\right) \tilde{E}_{0_{I}}.

Since \alpha \text { and } \beta are positive, it follows that 2 /(1+\alpha \beta) is positive, and hence the transmitted wave is in phase with the incident wave, and the (real) amplitudes are related by E_{0_{T}}=\left(\frac{2}{1+\alpha \beta}\right) E_{0_{I}} The reflected wave is in phase if \alpha \beta<1 \text { and } 180^{\circ} \text { out of phase if } \alpha \beta>1 ; the (real) amplitudes are related by E_{0_{R}}=\left|\frac{1-\alpha \beta}{1+\alpha \beta}\right| E_{0_{I}} .

These are the Fresnel equations for polarization perpendicular to the plane of incidence.

To construct the graphs, note that \alpha \beta=\beta \frac{\sqrt{1-\sin ^{2} \theta / \beta^{2}}}{\cos \theta}=\frac{\sqrt{\beta^{2}-\sin ^{2} \theta}}{\cos \theta} , where θ is the angle of incidence, so, for \beta=1.5, \alpha \beta=\frac{\sqrt{2.25-\sin ^{2} \theta}}{\cos \theta} . [In the figure, the minus signs on the vertical axis should be decimal points.]

Is there a Brewster’s angle? Well, E_{0_{R}}=0 \text { would mean that } \alpha \beta=1, and hence that

\alpha=\frac{\sqrt{1-\left(v_{2} / v_{1}\right)^{2} \sin ^{2} \theta}}{\cos \theta}=\frac{1}{\beta}=\frac{\mu_{2} v_{2}}{\mu_{1} v_{1}} \text {, or } 1-\left(\frac{v_{2}}{v_{1}}\right)^{2} \sin ^{2} \theta=\left(\frac{\mu_{2} v_{2}}{\mu_{1} v_{1}}\right)^{2} \cos ^{2} \theta , so

1=\left(\frac{v_{2}}{v_{1}}\right)^{2}\left[\sin ^{2} \theta+\left(\mu_{2} / \mu_{1}\right)^{2} \cos ^{2} \theta\right] . \text { Since } \mu_{1} \approx \mu_{2}, \text { this means } 1 \approx\left(v_{2} / v_{1}\right)^{2} , which is only true for optically
indistinguishable media, in which case there is of
course no reflection—but that would be true at any angle, not just at a special “Brewster’s angle”. [If \mu_{2} were substantially different from \mu_{1} , and the relative velocities were just right, it would be possible to get a Brewster’s angle for this case, at

\left(\frac{v_{1}}{v_{2}}\right)^{2}=1-\cos ^{2} \theta+\left(\frac{\mu_{2}}{\mu_{1}}\right)^{2} \cos ^{2} \theta \Rightarrow \cos ^{2} \theta=\frac{\left(v_{1} / v_{2}\right)^{2}-1}{\left(\mu_{2} / \mu_{1}\right)^{2}-1}=\frac{\left(\mu_{2} \epsilon_{2} / \mu_{1} \epsilon_{1}\right)-1}{\left(\mu_{2} / \mu_{1}\right)^{2}-1}=\frac{\left(\epsilon_{2} / \epsilon_{1}\right)-\left(\mu_{1} / \mu_{2}\right)}{\left(\mu_{2} / \mu_{1}\right)-\left(\mu_{1} / \mu_{2}\right)}

But the media would be very peculiar.]

By the same token, \delta_{R}  is either always 0, or always π, for a given interface—it does not switch over as you change θ, the way it does for polarization in the plane of incidence. In particular, if \beta=3 / 2, \text { then } \alpha \beta>1 , for

\alpha \beta=\frac{\sqrt{2.25-\sin ^{2} \theta}}{\cos \theta}>1 \text { if } 2.25-\sin ^{2} \theta>\cos ^{2} \theta, \text { or } 2.25>\sin ^{2} \theta+\cos ^{2} \theta=1.

In general, for \beta>1, \alpha \beta>1, \text { and hence } \delta_{R}=\pi \text {. For } \beta<1, \alpha \beta<1, \text { and } \delta_{R}=0 .

At normal incidence, α = 1, so Fresnel’s equations reduce to E_{0_{T}}=\left(\frac{2}{1+\beta}\right) E_{0_{I}} ; E_{0_{R}}=\left|\frac{1-\beta}{1+\beta}\right| E_{0_{I}} ,
consistent with Eq. 9.82.
 

\tilde{E}_{0_{R}}=\left(\frac{1-\beta}{1+\beta}\right) \tilde{E}_{0_{I}}, \quad \tilde{E}_{0_{T}}=\left(\frac{2}{1+\beta}\right) \tilde{E}_{0_{I}}                     (9.82)

Reflection and Transmission coe!cients: R=\left(\frac{E_{0_{R}}}{E_{0_{I}}}\right)^{2}=\left(\frac{1-\alpha \beta}{1+\alpha \beta}\right)^{2} . Referring to Eq. 9.116,

T \equiv \frac{I_{T}}{I_{I}}=\frac{\epsilon_{2} v_{2}}{\epsilon_{1} v_{1}}\left(\frac{E_{0_{T}}}{E_{0_{I}}}\right)^{2} \frac{\cos \theta_{T}}{\cos \theta_{I}}=\alpha \beta\left(\frac{2}{\alpha+\beta}\right)^{2}                             (9.116)

T=\frac{\epsilon_{2} v_{2}}{\epsilon_{1} v_{1}} \alpha\left(\frac{E_{0_{T}}}{E_{0_{I}}}\right)^{2}=\alpha \beta\left(\frac{2}{1+\alpha \beta}\right)^{2}.

R+T=\frac{(1-\alpha \beta)^{2}+4 \alpha \beta}{(1+\alpha \beta)^{2}}=\frac{1-2 \alpha \beta+\alpha^{2} \beta^{2}+4 \alpha \beta}{(1+\alpha \beta)^{2}}=\frac{(1+\alpha \beta)^{2}}{(1+\alpha \beta)^{2}}=1.

9a
9b

Related Answered Questions